PRESENTED IN THE INTERNATIONAL CONFERENCE ON WELDING AND JOINING HELD DURING 76TH IIW ANNUAL ASSEMBLY, SINGAPORE, 2023

Heat Treatment for Property Enhancement of Wire Arc Additive Manufactured Stainless Steel

Ramesh Mamedipaka, Shivraman Thapliyal*

Mechanical Engineering Department, National Institute of Technology Warangal, India- 506001 Email: shivraman@nitw.ac.in

Abstract

The influence of the different heat inputs and post-deposited heat treatment on the metallurgical and mechanical properties of the GMAW-based WAAM SS316L was investigated. Epitaxial columnar grain growth was observed along the build direction for all three heat inputs. The fine and coarse vermicular δ -ferrite structures were observed in the bottom and middle regions, respectively. The reticular δ -ferrite morphology was observed in the top region due to the absence of remelting or reheating. The presence of δ -ferrite and σ -phases increases with increasing heat input. The higher volume fraction of δ -ferrite and σ -phases results in an increase in anisotropy in metallurgical and mechanical properties. The post-deposition heat treatment at 1050° C for 15 min dissolves the σ -phases and decreases the δ -ferrite volume fraction from 9.35 % to 2.15 % for the lower heat input wall. The complete elimination of σ -phases leads to a decrease in Y.S., UTS, and microhardness values.

Keywords: Wire arc additive manufacturing, stainless steel, heat treatment, mechanical properties, δ -ferrite and σ -phases.