
INDIAN WELDING JOURNAL Volume 57 No. 1, January 2024

Artificial Neural Networks Based Prediction 
of Penetration in Activated Tungsten 
Inert Gas Welding

RESEARCH   ARTICLE

1 2 3Samarendra Acharya , Debasish Gonda , Santanu Das
1,2,3Mechanical Engineering Department 

Kalyani Govt. Engineering College, Kalyani- 741235, West Bengal, India
1Department of Mechanical Engineering 

Global Institute of Management and Technology, Krishnanagar, Nadia, West Bengal
1Email: samarendraacharya2012@gmail.com 

2 3debashisgonda.me@gmail.com, sdas.me@gmail.comDOI : 10.22486/iwj.v57i1.223729 

ORCID: Samarendra Acharya: https://orcid.org/0000-0002-8337-8839
ORCID: Debasish Gonda: https://orcid.org/0000-0002-7300-2846
ORCID: Santanu Das: https://orcid.org/0000-0001-9085-3450

Abstract

Using GTAW, or tungsten inert gas (TIG) welding, weld penetration is usually lesser than the other arc welding processes. ATIG 

(Activated-flux TIG) welding can be a good alternative to provide deep penetration, and hence, improved productivity. In this work, 

304L SS plate of 8 mm thickness was used as base plate, and a flux with a mixture of SiO , MnO  and MoO  was used as a ternary flux in 2 2 3

the ratio of 1:1:2. A 2-factor 3-level response surface methodology of central composite design was considered for designing 

experimental runs. Back Propagation (BP) type Artificial Neural Networks (ANN) model was developed to assess penetration in ATIG 

welding by using heat input and pulse frequency as the two process parameters. The ANN chosen has 2-10-1 network structure. 

Results show that the predicted values through ANN are conforming quite well to the experimentally obtained penetration, and hence, 

the applicability of ANN.

Keywords: Welding, Activated Tungsten Inert Gas Welding, ATIG, Artificial Neural Networks, ANN, NN, Prediction, Depth of 

Penetration.

1.0 INTRODUCTION

Shallow penetration in case of TIG welding could be overcome 

by applying a thin layer of activating flux over the surface of 

base plate prior to welding in case of ATIG welding as stated by 

Howse DS and Lucas W [1]. They also stated that arc 

constriction effect is the main responsible mechanism to cause 

deeper penetration as compared to increase of temperature 

dependent surface tension gradient which is known as 

reversed Marangoni effect. 

Gurevich et al. [2], in 1965 first introduced the idea of activated 

flux TIG welding. After that a slow progress was seen until the 

beginning of 21st century when several extensive research 

works were done and still continuing. Different espousers [3-6] 

worked with different component of flux in single or a hybrid 

flux mixture in different proportions to increase productivity as 

well as deeper penetration. It was revealed that flux 

proportions played a vital role to cause deeper penetration. 

Researchers showed that 10-12 mm of penetration had been 

achieved by applying activated flux TIG welding. 

Mainly two mechanisms which are responsible to cause deeper 

penetration, one is reversed Marangoni effect and the other is 

arc constriction effect [7]. Some of the advantages claimed by 

researchers in ATIG welding focussed on: 

1) maximization depth of penetration over 2-3 mm depth of 

penetration achieved by conventional TIG welding 

2) lowering distortion due to narrow arc and reduced heat 

input for constant depth of penetration 

3)  restricting heat affected zone due to constriction of arc 

4) minimisation of the problem of incompatibility of weld 

penetration due to cast-to-cast material variations. 

Bhattacharya [8] reported that in ATIG welding, arc and metal 

flow behavior was controlled by arc constriction effect and 
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reversed Marangoni effect. They showed that due to the 

presence of activated fluxes such as SiO , TiO , CrO  and MoS , 2 2 3 2

the depth of penetration was achieved more than plate 

thickness. They explained that due to increase of oxygen 

concentration in the weld pool in presence of activated fluxes, 

heat density increases and consequently depth of penetration 

also increased.

In the next year, Roy et al. [9] experimented on AISI 316 

stainless steel plate of thickness 5 mm by applying autogenous 

bead-on-plate welding. The authors used binary flux mixture 

comprising of SiO  and TiO  in the ratio of 1:1, 1:4 and 4:1 and 2 2

compared to that of weldment without flux. Electrode tip 

distance and welding speed were kept constant at 5 mm and 

120 mm/min respectively. Current used was DCSP of values 

90A, 100A and 110 A. Another group, Ahmed et al. [10] used 

Response Surface Methodology (RSM) in TIG welding. DOP 

was taken as the response and Welding Current, Welding 

Voltage, Welding Speed and Pulse-on time were used as the 

input. Full factorial Central Composite Design (CCD) was used 

for the analysis. Five levels of each of the input were taken in 

the experiment. The DOP was most affected by the welding 

speed.

Vora et al. [11] investigated on base material SA 516 Gr.70 and 

compared the experimental values with the predicted values by 

applying two optimization technics such as Jaya algorithm and 

Teaching-learning-optimization technique (TLBO). As input 

parameters they used electrode gap, welding current and 

welding speed by taking three levels of each. They used TiO  as 2

flux. Maximum depth of penetration was achieved as 8 mm. It 

was stated that the experimental values were in close 

proximity with that obtained by the two optimization 

techniques as mentioned. An attempt was made by Sivakumar 

et al. [12] taking the base material as Inconel 625. Response 

surface design method was used by taking 3 factors and 5 

levels. As input parameters, they choose welding current, 

welding speed and arc gap. Maximum depth of penetration 

was achieved as 6.5 mm. Here the two optimization technics, 

such as Grey Relational Analysis (GRA) and TOPSIS model 

were used to validate the experimental results. It was stated 

that GRA showed better result than TOPSIS. SEM and XRD 

were used for analyzing the results. 

Acharya et al. [13] stated the impact of various activating 

fluxes on different materials such as aluminium alloy, 

magnesium alloy, stainless steel and dissimilar metals. 

Reversed Marangoni effect and arc constriction effect are 

mainly responsible to cause deep penetration.  It was 

recommended that three kinds of polarity of current were used 

in ATIG welding such as DCSP (direct current straight polarity) 

or DCEN (direct current electrode negative), DCRP (direct 

current reverse polarity) or DCEP (direct current electrode 

positive) and AC (alternating current).  ATIG welding is highly 

recommended to industries for increase of depth of 

penetration as well as productivity.

Chandrasekar et al. [14] reported that fusion welding to be the 

best suited method for industry based application. ATIG 

process associated with comparatively less bead width and 

high depth of penetration as well as less heat input. Individual 

materials are treated with Proper flux material to get the 

desired benefit from ATIG welding. Unni et al. [15] 

experimented on 316 LN steel during ATIG welding. They 

compared the experimental results with 3 D model. ANSYS 

FLUENT was used for creation of the model. It was found that if 

the oxygen simulation levels vary above 150 ppm, inward flow 

of molten pool occurred. The opposite phenomenon occurred 

when the oxygen simulation level falls below 150 ppm. It was 

found that the stimulated results matched with the 

experimental ones. 

Niagaj [16] experimented on ATIG welding by considering four 

different types of steel by  taking five different types of fluxes. 

The types of steels are Unalloyed Carbon Steel, Fine Grained 

Steel, Weld on 300 steel and AISI 304L steel. Five different 

fluxes were considered such as Cr O , TiO , SiO2, Fe O , NaF 2 3 2 2 3

and AlF . It was also stated that method of production of steel 3

also played a vital role in creating large depth of penetration. It 

was also revealed that pure metal can produce higher depth of 

penetration. NaF and AlF  were stated to have little effect on 3

AISI 304L and more effective for fine grained steel. In another 

work conducted by Vora et al. [17], they reported the effect of 

TiO2 flux on 6 mm thickness of SA 516 Gr. 70 carbon steel 

material. In this work, welding current, arc length and torch 

travel speed were selected as input parameters and responses 

were taken such as heat input, heat affected zone, D/W ratio 

and depth of penetration. Process parameters as well as 

responses were optimised by the combinations of two 

algorithms namely RSM (Response Surface Methodology)and 

HTS (Hough Transform Statistics) algorithms.

The Analytical hierarchy process (AHP) was effectively applied 

by Acharya et al. [18] for optimization of input parameters and 

responses with the experimental values conducted by 

Magudeeswaran et al. (2014). 9 experimental runs were 

conducted by taking the input parameters such as heat input, 

weld speed and electrode gap and consequently, depth of 

penetration as response. They used AdorAeTIG as flux and 

UNSS32205 duplex stainless steel as base metal during 

experimentation. The AHP, a multi-criteria decision making tool 

was used to explore the optimal depth of penetration and 

productivity benefits in ATIG welding. Reversed Marangoni 

effect and arc constriction effect could be the main mechanism 

causing deep penetration in ATIG welding..

Artificial neural network (ANN) was successfully applied by 

Ates [19] to predict the parameters of GMAW process. In this 

ANN model, gas mixtures were the input parameters and 
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output parameters were the mechanical properties such as  

impact strength, tensile strength, elongation and hardness of 

weld metal, etc. For training purposes, extended delta-bar 

delta learning algorithm was used for controlling ANN model. 

The results based on ANN model were in good accord with that 

obtained by calculated ones.

Pal et al. [20]  carried out an experiment on designing based on 

response surface methodology in pulsed metal inert gas 

welding. A multi-layer neural network was implemented to 

predict ultimate tensile stress of weld joint. Pulse voltage, 

back-ground voltage, pulse duration, pulse frequency, wire 

feed rate and welding speed, and RMS values of weld current 

and voltage were considered to be input variables and UTS was 

chosen output variable. It was reported that the output 

obtained through multilayer neural network model showed 

better result than that obtained through multiple regression 

model analysis.

Chandrasekhar, N.  and Vasudevan, M. applied [21] an efficient 

model combining ANN and genetic algorithm (GA) for 

evaluating optimal process parameters to achieve favourable 

bead width and penetration in activated flux TIG (A TIG) 

welding of 304 LN and 316 LN stainless steel. First ANN models 

matching up bead geometry, viz. bead width and depth of 

penetration, with ATIG process parameters, viz. current, 

voltage, welding speed, and arc gap were introduced 

separately for 304 LN and 316 LN stainless steels. Then GA 

code was implemented in which main function was evaluated 

using ANN models. Close matching was observed between 

weld-bead geometry obtained using the GA optimized process 

parameters with the observed ones. Genetic algorithm based 

optimisation model was developed [22] for optimisation of 

bead geometry in 304LN and 316 LN steels. 

Saha and Das as well as Saha et al. [23-26] reported 

remarkable improvement of penetration in ATIG welding with 

or without using pulsed TIG by varying different welding 

process parameters and employing single and double flux 

mixtures. Single TiO  flux and some other combinations of 2

fluxes with TiO  as one of their compositions were found to give 2

beneficial effect in terms of enhancing productivity through 

improved penetration thereby requiring less number of 

welding passes.

In this work, 304L Stainless Steel plate of 8 mm thickness was 

used as base metal, and a flux with the mixture of SiO , MnO  2 2

and MoO  was used as a ternary flux in the ratio of 1:1:2. A 2-3

factor 3-level response surface methodology (RSM) of central 

composite design was considered for designing the 

experiment. Back Propagation (BP) type Artificial Neural 

Networks (ANN) model would be developed to assess 

penetration in ATIG welding by using heat input and pulse 

frequency as the input variable to find the applicability of ANN.

2.0  DETAILS OF EXPERIMENTATION

The experiment is conducted taking base metal SS304L with 

size 100 x 75 x 8 mm. During experimentation of ATIG welding, 

autogenous butt welding is carried out taking zero root gap. At 

first, bead-on-plate welding is conducted for trial run and then 

ATIG welding is done by taking a ternary flux mixture SiO , 2

MnO  and MoO  in the ratio of 1:1:2.2 3

In the present work, 13 pairs of welding specimens were used. 

At first, cleaning of the edges with alcoholic solution were done 

after proper grinding with the help of pedestal grinding wheel. 

For proper alignment of two work pieces with zero root gap, 

clamping was done. After proper fixing i.e. proper alignment 

one copper plate was allowed to affix under the joint area. This 

was done to disperse the heat generated and consequently to 

reduce the heat affected zone. After that, 13 experiments were 

done with autogenous butt welding with zero root gaps. 2% 

thoriated tungsten electrode with 3 mm diameter (air cooled) 

is used to conduct the experiment. Table 1 and Table 2 show 

the details of experimental runs performed. Weld joint of all the 

experimental runs were shown in Fig. 1. After welding, all the 

welded plates were cooled in ambient temperature. Welded 

portion were cut by an abrasive cutter and followed by belt 

grinding, disc grinding and polishing are done. Finally, weld 

bead geometry is observed under microscope. A typical bead is 

shown in Fig. 2.

 Sl. No. Variables Unit Minimum Maximum 
    Value Value

 1 Heat Input kJ/mm 1.281 2.767

 2 Pulse Frequency Hz 80 160

Table 1 : Range of input variables for welding
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Input parameters were selected as heat input and  pulse 

frequency. The design was considered with 2 factors and 3 

levels following RSM (Response surface methodology) with 

CCD (Central composite design). Output parameters selected 

as depth of penetration (Fig.2). 99.9% pure argon gas 
o(99.9%)  was applied as the shielding gas and 75  gun angle 

was set for the whole experiment. 5 mm distance from 

electrode to work piece was kept as constant. Gas pressure 

used was 2.5 bar. A heat input (HI) of 2.767 kJ/mm, pulse 

frequency of 160 Hz was found to be the optimal condition of 

ATIG welding.

3.0  THE ANN APPLIED                                                                                                        

13 data sets were obtained from the experimental work and 

these data  sets are used to build up the Artificial Neural 

Networks (ANN) of 2-10-1 structure. Variations of hidden 

nodes in a single hidden layer were carried out and 

consequently to find minimum training error, finally the 

structure is found with 10 hidden nodes in a single hidden layer. 

The data set consists of input process parameters, i.e. heat 

input and pulse frequency and the corresponding output 

parameter, or response, that is, depth of penetration (P). The 

work is to forecast these bead geometry parameter with the 

help of ANN. Levenberg-Marquardt training algorithm is used. 

As Performance Function, mean square error is used. Here, in 

the ANN model, 70% data sets, i.e. 9 sets of data, are used for 

training purpose, 15% data, i.e. 2 sets of data, are kept for 

validation and 15% of data, i.e. 2 sets of data, are employed for 

testing.

 1 1.281 80 3.07

 2 2.767 80 4.05

 3 1.281 160 3.55

 4 2.767 160 4.42

 5 1.281 120 3.22

 6 2.767 120 4.16

 7 1.470 80 3.78

 8 1.470 160 4.16

 9 1.470 120 3.744

 10 1.470 120 3.720

 11 1.470 120 3.739

 12 1.470 120 3.740

 13 1.470 120 3.745

Sl.
No

Heat input
(kJ/mm)

Input parameters Response

Pulse
frequency

(Hz)

Depth of
penetration

(mm)

Table 2 : Details of experimental runs

                    Fig. 2: A typical bead geometry
         [R= Reinforcement,   W= BW, P= Depth of penetration]
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Figure 1 : ATIG welded specimen

d. Weld Joint exp. No.4

g. Weld Joint exp. No.7

j. Weld Joint exp. No.10

m. Weld Joint exp. No.13

f. Weld Joint exp. No.6

i. Weld Joint exp. No. 9

l. Weld Joint exp. No. 12

e. Weld Joint exp. No.5

h. Weld Joint exp. No. 8

k. Weld Joint exp. No. 11
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Table 3 : Summary of processes 
(Training, Validation and Testing)

Figure 3 :  Regression plot analysis

 Process Observation MSE R

 Training 9 0.0864 0.8781

 Validation 2 0.2707 -1.0000

 Test 2 0.1560 1.0000

In this model, the values of MSE (mean square error) in 

training, validation and testing are nearly close to zero and the 

values of R (coefficient of correlation) in training, validation 

and testing are 1 and nearly close to 1. So, this ANN model is 

taken into consideration for prediction purpose. A value of R 

makes sense very close to 1 as mentioned in Table 3 for 

different processes such as training, validation and testing, 

because it measures goodness-of-fit. The statistical implication 

states that any changes in the independent variables 

reimburse with the dependent variables.  

4.0  REGRESSION PLOT ANALYSIS OF

        EXPERIMENTAL NETWORK 

Close correlation between training, validation and testing 

stages as shown by Regression plot analysis of experimental 

network and depicted in Fig. 3.  It can be seen that the 

regression value is close to 1; so the model constructed is 

significant.

76



Acharya et al. : Artificial Neural Networks Based Prediction of Penetration in Activated Tungsten Inert Gas Welding

 Sl. No. P (Experimental) P (Predicted)

 1 3.07 3.735

 2 4.05 3.5881

 3 3.55 3.2816

 4 4.42 4.424

 5 3.22 3.0952

 6 4.16 4.0776

 7 3.78 3.761

 8 4.16 3.5216

 9 3.744 3.43

 10 3.720 3.43

 11 3.739 3.43

 12 3.740 3.43

 13 3.745 3.43

5.0  RESULTS AND DISCUSSION 

Table 4 and Fig. 4 show the correlation of experimental and 

predicted depth of penetration values of the 13 experimental 

runs, Commensuration between the predicted values and the 

experimentally observed values of bead geometry (P) can be 

seen with some fluctuations at some experimental runs. By 

varying no. of  training data sets and no. of hidden layers and 

hidden nodes by trial and error method, authors forecast the 

output keeping fixed the input and output nodes. Some 

fluctuations are observed between experimental and predicted 

values using ANN and it is not uncommon.

Authors elucidate from Fig. 4 that fluctuations between 

experimental and predicted data are fairly small, and hence, 

ANN. can be applied successfully.

If more data sets are considered, prediction with ANN model 

may be better with lesser estimation error. Again somehow no. 

of hidden layers may be more than 1, and then there is a 

question of checking value of training error if it sets off lesser 

than the single hidden layer ANN model.

Graphical representation of the attainment in the stage for 

validation with the data assigned for validation is shown in Fig. 

5. At the epoch 1, the best validation exhibition is observed 

giving the minimum forecasting error.

Table 4 : Depth of penetration 
(predicted and experimental) in mm

Fig. 4 : Bar chart of experimental and predicted depth of penetration with deviation
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Fig. 5 :  Graph of best validation performance 

6.0  CONCLUSION

In this work, a new ternary flux mixture (SiO , MnO  and MoO ) 2 2 3

mixed with 1:1:2 fixed proportions was attempted to get 

large depth of penetration. A penetration of 4.42 mm was 

achieved with a heat input of 2.767 kJ/mm, and pulse 

frequency of 160 Hz.. 

Forecasted depth of penetration in ATIG welding achieved by 

the use of artificial neural networks is found to be very close to 

that of the experimental value. Although some deviations are 

observed at certain cases. So, it can be accorded that the ANN 

can be suitably and successfully implemented as an estimation 

tool. 
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