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Abstract
In the field of biomedicine, the green synthesis of Zinc Oxide Nanoparticles (ZnONPs) utilising plant extracts has piqued interest. The 
reduction nature of herbal extracts has recently aided in the production of spherical ZnONPs of various potentials from zinc salt. In 
this study, fresh leaf (aqueous) extracts of Cannabis sativa were used as reducing and stabilising agents in a rapid, environmentally 
friendly approach for the synthesis of ZnONPs. UV–VIS and Fourier transform infrared spectroscopy, as well as transmission electron 
microscopy, were used to analyse the biosynthesized CNS-ZnONPs (TEM). The antibacterial and antibiofilm properties of produced 
CNS-ZnONPs were also studied in vitro. The presence of a prominent absorption peak at 380 nm, which corresponds to the CNS-
ZnONPs’ Surface Plasmon Resonance (SPR) band, indicated the creation of CNS-ZnONPs. The produced CNS-ZnONPs were spherical in 
shape, with an average particle size of 16.25 nm, according to TEM examination. The synthesised CNS-ZnONPs also showed significant 
antibacterial activity against a variety of Gram-positive and Gram-negative microorganisms. Furthermore, the biosynthesized CNS-
ZnONPs significantly reduced biofilm formation. Cannabis sativa leaf extracts may be utilised to easily synthesise ZnONPs, which can 
be employed as a natural source of antibacterial and antibiofilm agents.

1. Introduction
The term “Green Chemistry” encompasses environmentally 
friendly materials that are suitable for biomedical and 
therapeutic applications, in which the lethal element/compound 
does not use in the process of synthesis. The different types of 
micro-organisms have been employed to synthesize diverse 
metallic nanoparticles (NPs). That has an advantage over other 
conventional chemical processes like minimal cost, energy 
saving, as its green chemistry. Biocompatibility of bio-inspired 
NPs opens up a lot of possibilities in biomedicine and other 
sectors1,2. The inorganic nanoparticle demands have been 
increasing enormously and manufacturing is expected to reach 
$13.7 billion by 20263–6. The applications of nanomaterials in 
the various field have contributed vastly to macroeconomic 
industries7. Antibacterial properties are seen in a variety of 
inorganic NPs, including Ag, Au, Cu, CuO, TiO2, and ZnO. 
Including the other inorganic NPs, particular ZnONPs have 
great attention because of the simple and easy preparation 
method, inexpensive and harmless for humans as well as 

animals. Along with being widely employed in the preparation 
of health care items8,9. Additionally, ZnONPs have a great 
potential in biological uses such as gene delivery, biological 
sensing, biological tagging, drug delivery, and nanomedicines. 
Cotton textiles were used to synthesize stable nanoparticles as 
well10,11. From the antimicrobial source, the green synthesized 
nanoparticles have additional features of self-functionalization 
of molecular medicine on the nanoparticles, as seen by their 
improved antibacterial efficacy. Vijayakumar et al., in the 
year 2018, employed the study that indicated the production 
of improved antibacterial nanoparticles. The various article 
demonstrated that synthesized ZnONPs form the green routes 
extracts obtained from diverse plants which produce NPs of 
different sizes and shapes. ZnONPs have different shapes like 
nanoflowers, nanosphere, hollow sphere, hexagonal wurtzite, 
and nanorods were described by Pachaiappan et al.,12–14. 
While ZnO is hydrophilic, hydrophobic films are effective in 
preventing biofilm adherence. Meanwhile, one study found 
that ZnO-coated surfaces significantly reduced biofilm 
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development and that the formation of hydroxyl radicals, 
rather than the presence of zinc ions, played a critical role in 
antibiofilm activity15,16. Furthermore, ZnO composite films 
may be employed in a variety of applications to prevent biofilm 
development, including aquatic product preservation17,18. 
Furthermore, ZnO composite films may be utilized to prevent 
biofilm formation in a variety of industries, and they have a 
promising future in the preservation of aquatic products. As 
a result, the hydrophobic characteristics of ZnO films must 
be improved19. Cannabis sativa belongs to the Cannabis 
binaceae family, which is also known as weed hemp, Ganja, 
Hashish, reefer, marijuana, grass. Mainly found in Central 
Asia, cannabis is one of the oldest psychoactive plants known 
to man, along with that it is also used worldwide either as a 
medicinal plant or as a good source of fibers and food20,21. 
Therefore, surprisingly, leaves and seeds are mainly employed 
to prepare extracts in most research assessing antibacterial 
activities of cannabis. Cannabis sativa has multiple bioactive 
compounds. Cannabinoids, flavones, and terpenes are the 
main components are present in this plant. Article published 
by Khan et al., (2016) revealed that secondary metabolites, 
such as terpenoids, play an important role a reducing agent 
in the synthesis of NPs.22 AIDS, cancer, Post-Traumatic 
Stress Disorder (PTSD), multiple sclerosis, anorexia, nausea, 
cachexia, neuropathic pain, drug addiction, neurological and 
other mental disorders have all seen an upsurge in interest in 
legalizing cannabis for therapeutic purposes23,24. 

During this study, we used Cannabis sativa leaf extract to 
synthesize CNS-ZnONPs via green pathways, with a focus 
on NP development at an optimum temperature. UV-visible 
(UV-VIS) spectroscopy was used to determine the optical 
characteristics of the synthesized nanoparticles. Fourier 
transformed infrared spectroscopy (FTIR) and Transmission 
Electron Microscopy (TEM) was used to characterize NPs. 
Further the purified and characterized ZnONPs were showed 
antibiofilm and antimicrobial properties against B. subtilis 
(MTCC 441), Escherichia coli (ATCC 25923), Klebsiella 
pneumoniae (ATCC 13883), and B. pumilis (MTCC 160).

2. Material and Methods

2.1 Chemicals 
The media and chemicals were procured from Sigma Aldrich 
(St. Louis, USA) and HiMedia, India. The Multi-Drug Resistant 
(MDR) strain Escherichia coli (NCIM 2571), B. pumilis (MTCC 
160), Klebsiella pneumoniae (ATCC 13883) and B. subtilis 

(MTCC 441) were purchased from NCIM, Pune (India). All 
bacterial strains were cultured in MHB (Mueller Hinton broth) 
g/L: Casein hydrolysate, 17.5; Starch 1.5; dw, 1000 mL and pH 
7.3 at 37°C for 24 h.

2.2 ZnONPs Synthesis with Plant Extract
For the preparation of plant extract, the cannabis sativa leaves 
were thoroughly washed, dried and weighed. The leaves were 
crushed with the help of pestle mortar and tris buffer was 
added in it. Take some ice cubes in the polypropylene moulded 
tray and place pestle & mortar  in it with plant extract and leave 
it for some time. Then again crush the extract and filter it with 
the help of Whatsman filter paper in the centrifuge tube and 
then the tubes were placed in centrifuge at 6000 rpm at 4°C 
for 10 min. Then remove the pellet from the extract and take 
the supernatant in another centrifuge tube. Extract is stored 
in refrigerator for future purposes. 3 ml of the prepared plant 
extract was taken in 20 ml of centrifuge tube and 3μl of zinc 
sulphate salt was added to the plant extract. Keep the reaction 
tube in incubator at about 37°C for 48 hrs. After 48 hrs. Then 
the sample was taken for UV-VIS spectroscopy and O.D values 
were recorded, sample was stored in the refrigerator for further 
experiments.

2.3 Characterization of Synthesized CNS-
ZnONPs
For the characterization of the sample UV–VIS spectroscopic 
technique was used and set to a resolution of 1 nm in the quartz 
cuvette. Further TEM (Transmission Electron Microscopy) of 
the sample was accomplished by TECNAI G2 Spirit BioTWIN 
operated at an 80 kV accelerating voltage by the FEI Company’s 
Transmission Electron Microscope. FTIR of CNS-ZnONPs 
was performed by the method used by baker et al., in year 
2020, with few modifications25.  

2.4 Antibacterial Screening 
To test the antibacterial activity of the CNS-ZnONPs, well 
diffusion method was used26. The antibacterial potential of 
biosynthesized NPs was estimated against some pathogenic 
bacteria, i.e., MDR strain of B. subtilis (MTCC 441), Escherichia 
coli (ATCC 25923), Klebsiella pneumoniae (ATCC 13883) 
and B. pumilis (MTCC 160). The Antibacterial activity was 
performed as described earlier by Bano et al., in year 2021, with 
few modifications and the final prepared plates were incubated 
for 24 h at 37C. Subsequently, the zones of inhibition were 
measured in mm27.
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2.5 MIC and IC50 Value Determination
The determination of minimum inhibitory concentration 
was done by using the microdilution method in 96-microwell 
plates28,29. The antibacterial potential of CNS-ZnONPs was 
intended by their MICs against B. subtilis (MTCC 441), 
Escherichia coli (ATCC 25923), Klebsiella pneumoniae (ATCC 
13883) and B. pumilis (MTCC 160). The bacterial strain was 
collected in the mid-logarithm phase and diluted to 2x105 
CFU/mL in 0.03% of Luria-Bertani (LB) broth in PBS. The 100 
μL of LB medium consist of CNS-ZnONPs were serially diluted 
in 96 well plates. The lowest concentration of NPs at which 
25%, 50%, 75% growth of microbes was inhibited is defined as 
MIC25, MIC50, and MIC75, respectively. For negative control, 
Milli-Q water was used for each experiment.

2.6 Antibiofilm Potential of ZnONPs
The formation of biofilm was usually pathogenic in nature 
and can cause many nosocomial infections. According to the 
National Institute of Health (NIH) approximately 65–80% of all 
infections occur due to biofilm-forming microorganisms30–33. 
CNS-ZnONPs have the unique potential to destroy the 
biofilms of a variety of harmful bacteria types. The biofilms 
of B. subtilis (MTCC 441) Escherichia coli (ATCC 25923), 
Klebsiella pneumoniae (ATCC 13883) and B. pumilis (MTCC 
160) were produced using the method reported earlier, with 
minor alterations34,35. Biofilm’s viability was resoluted using the 
crystal violet colorimetric assay27. The calculation of Percent 
attachment was done by the following equation: 

Attachment % =
Absorbance of sample

× 100
Absorbance of control

The following equation was used to calculate the percent 
inhibition of the biofilm.

Biofilm % Inhibition =
Control OD 490nm

× 100
Test sample OD 490nm

2.7 Statistical Analysis
The mean differences between groups were examined using 
a one-way Analysis of Variance (ANOVA) with a post-hoc 
Tukey HSD test. The statistical analysis was carried out with the 
Origin 6.0 software (US)36. All tests were declared statistically 
significant at p ≤ 0.0527. 

3. Results 

3.1 Biosynthesis of Zinc Oxide Nanoparticles 
and Characterization 
Synthesis of ZnONPs via green routes using Cannabis sativa 
needed initial techniques by UV–vis spectroscopy. During the 
process of synthesis Cannabis sativa act as both capping as 
well as reducing agents. By reporting the distinctive Surface 
Plasmon Resonance (SPR) spectra of CNS-ZnONPs at a 
wavelength of 380 nm, the synthesis of CNS-ZnONPs was 
verified (Figure 1(a)). According to the Mie theory, the size 
was shown to be 16 nm, which was further validated by TEM 
analysis (Figure 1(b)) using the Gatan Digital Micrograph. 
The TEM micrographs reported well-defined, monodispersed 
CNS-ZnONPs of identical size. Pure extract (Figure 1(c)) had 
peaks at 3550 to 3300 cm1 (–NH), 2900 cm1 (–CN), 1632 cm1 
(amide I), and 1065 cm1 (C–O) in the FTIR spectra. The –OH 
peak was missing in CNS-ZnONPs (Figure 1(d)), indicating 
that –OH was involved in the interaction with NPs during 
encapsulation.

3.2 Antibacterial Screening using Well Diffusion 
Method
The antibacterial action of CNS-ZnONPs against both gram-
positive and gram-negative bacterial strains was found to 
be satisfactory. Using the agar well diffusion method, the 
antibacterial potential of CNS-ZnONPs was evaluated against 
normal and MDR strains of B. subtilis (MTCC 441), B. pumilis 
(MTCC 160), Klebsiella pneumoniae (ATCC 13883), and 
Escherichia coli (ATCC 25923). The antibacterial potential 
was confirmed by a clear zone of inhibition surrounding the 
inoculated region (Figure 2). The maximum zone of inhibition 
was found against Escherichia coli (Figure 2(d)).

3.3 MIC and IC50 value determination
The MIC of bioactive compounds produced by ZnONPs was 
used to determine their antibacterial activity. After incubation 
at 37 °C for 24 to 48 hours, the inoculated plates were analyzed. 
The ZnONPs’ MIC value was determined to be around 31.2 10 
g/mL. The IC50 values for B. subtilis (MTCC 441), Escherichia 
coli (ATCC 25923), Klebsiella pneumoniae (ATCC 13883), and 
B. pumilis (MTCC 160) were reported to be 23.8, 31.2, 33.1, 
and 33.8 g/mL, respectively (Figure 3).
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Figure 1.  Characterization of Cannabis sativa mediated Zinc 
oxide nanoparticles (CNS-ZnONPs). (a) UV–VIS spectroscopy. 
(b) Transmission electron microscopy. (c) Fourier transform 
infrared (FTIR) spectrum of Extract. (d) CNS-ZnONPs.

Figure 2.  Qualitative assessment of antibacterial activity of 
CNS-ZnONPs. Müeller–Hinton (MH) agar plates were seeded 
with standardized suspensions (equivalent to the 0.5 McFarland) 
of. (a) B. subtilis (MTCC 441). (b) B. pumilis (MTCC 160). (c) 
Klebsiella pneumoniae (ATCC 13883). (d) Escherichia coli (ATCC 
25923). 
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Figure 3.  Determination of minimum inhibitory concentration 
(MIC) of CNS-ZnONPs against B. subtilis (MTCC 441), 
Escherichia coli (ATCC 25923), Klebsiella pneumoniae (ATCC 
13883), and B. pumilis (MTCC 160).
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Figure 4.  Image and graph showing inhibition of biofilm 
formation of CNS-ZnONPs. 
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3.4 Antibiofilm Potential of CNS-ZnONPs 
Biofilms
The crystal violet staining technique was used to investigate 
the anti-biofilm potential of ZnONPs. The bacterial strains 
were cultured in test tubes with and without extract. The 
biofilm development was significantly reduced (70-80%) when 
CNS-ZnONPs were used at IC50. CNS-ZnONPs was shown to 
be a more effective antibiofilm agent than the other extract. In 
the case of B. subtilis and E. coli, the decrease was more than 
threefold. In the positive control, there was no reduction in 
biofilm formation (without ZnONPs treatment) (Figure 4).

4. Discussion 
Cannabis sativa was utilised as a reducing and stabilising agent 
in this work, and zinc sulphate was used as a precursor. The 
synthesis of CNS-ZnONPs is thought to be triggered by aqueous 
leaf extract’s reducing enzymes and capping agents, such as 
secondary metabolites, which work together to decrease zinc 
sulphate14. UV–VIS spectra indicated the synthesis of CNS-
ZnONPs, and TEM confirmed the particle size distribution 
profile of the synthesised CNS-ZnONPs. Nonetheless, as 
compared to ZnONPs, silver nanoparticles showed to have 
higher antibacterial action against a variety of harmful 
microorganisms. The inherent antimicrobial characteristics 
of silver ions, as opposed to zinc ions, may explain the higher 
antibacterial activity of silver nanoparticles. ZnONPs were 
tested against a variety of bacteria types to determine that 
they had antibacterial properties35. ZnONPs inhibited a wide 
range of microorganisms in the current investigation, owing to 
different mechanisms. Due to the limited therapeutic choices 
for certain illnesses, antimicrobial resistance is one of the most 
challenging global public health challenges. Many studies 
address the problem of bacterial resistance by repurposing 
or renewing the therapeutic applications of medicinal plants. 
Furthermore, novel techniques to increase antimicrobial 
medication distribution, penetration, targeting, and 
pharmacokinetics have been discovered, one of which is drug 
nanoparticle compositions. Metallic nanoparticles were used 
to efficiently distribute antimicrobials, resulting in a significant 
increase in targeting and pharmacokinetics37. Furthermore, 
metallic nanoparticles were found to have antibacterial 
properties and effectively synergized with natural product 
antimicrobial activity. Since ancient times, zinc has been 
regarded as the best inorganic antibacterial agent for fighting 
infections and spoilage9. ZnONPs inhibited a wide range of 
microorganisms in the current investigation, owing to different 
mechanisms. ZnONPs target the bacterial cell membrane, 
cell wall, DNA, and proteins, in addition to having a strong 
penetrative power. ZnONPs have been shown to cause pits in 

bacterial membranes and cell walls on numerous occasions. 
ZnONPs have been demonstrated to target subcellular regions 
of cell membranes, causing pits and cellular breakdown and 
death. Furthermore, ZnONPs break the link between the 
glycans N-acetylglucosamine and N-acetylmuramic acid and 
form a link between the peptide surface and the cell wall’s 
glycan ports, leading to pit formation. ZnONPs have been 
shown to target more bacterial targets, such as respiratory 
chain dehydrogenases and bacterial chromosomes, in addition 
to targeting of cellular membrane and cell wall13. Furthermore, 
metallic nanoparticles’ propensity to release Reactive Oxygen 
Species (ROS), which impede the oxidation of released zinc 
ions, confers a biocidal function.

5. Conclusion
We have developed a green protocol for synthesizing zinc 
nanoparticles by using the Cannabis sativa leaf extract. The 
given zinc nanoparticles were found to boost the potential 
of Cannabis sativa leaf in different bioactivities and showed 
effective antibiofilm, antibacterial activities. The mode of 
internalization and interaction with bacterial can be a subject 
of further studies. The toxicity studies of silver nanoparticles 
have also been a matter of concern. Therefore, a detailed study 
of toxicity of these particles can also be a good prospect of 
further studies.
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