Effects of Different Photoperiodic Regimes on the Body Mass, Behavioural and Stress Responses in Golden Mahseer, Tor putitora

Jump To References Section

Authors

  • Department of Zoology, L.S.M. Government P.G. College, Pithoragarh – 262501, Uttarakhand ,IN
  • Department of Zoology, L.S.M. Government P.G. College, Pithoragarh – 262501, Uttarakhand ,IN
  • Department of Zoology, L.S.M. Government P.G. College, Pithoragarh – 262501, Uttarakhand ,IN
  • Department of Zoology, L.S.M. Government P.G. College, Pithoragarh – 262501, Uttarakhand ,IN
  • Department of Zoology, University of Lucknow, Lucknow–226007, Uttara Pradesh, ,IN

DOI:

https://doi.org/10.18311/jeoh/2021/26276

Keywords:

Behavioural, Cortisol, Golden Mahseer, Photoperiodic Skeleton
Zoology

Abstract

Golden mahseer, Tor putitora is a teleostean cold-water fish, known to occur in the rivers of Himalayas. Light affects the physiology of the fish. Therefore, the study was carried out to evaluate the effects of different photoperiodic regimes as environmental cues on the development of body mass, behavioural and stress responses in T. putitora. Fishes were exposed in the different photoperiodic regimes such as 8 hours light: 16 hours dark (8L:16D), 16 hours light 8 hours dark (16L:8D) and natural light condition. The body mass, cortisol and behavioural profiling were studied. Ethovision (XT-13) was used to record the different behavioural responses of the fish after the exposure to various photoperiodic regimes. The difference in the behavioural profiling and scoring was recorded in the different groups of the juveniles of the fish. Effects of light: dark skeletons such as 8 hours light: 16 hours dark (8L:16D), 16 hours light 8 hours dark (16L:8D) and natural light condition (Control) exhibited remarkable differences in the biomass enhancement in the juveniles of the fish (P<0.05). Maximum amount of cortisol (0.93± 0.08ng/ml) was recorded in the group of the fish exposed to 16L:8D compared to natural (0.78± 0.21ng/ml) and the group exposed to 8L:16D photoperiodic regime (0.69± 0.11ng/ml). A significant difference (P<0.05) in behavioural profiling of the fish exposed to green, red and natural colour was noticed, where velocity/swimming speed of the fish was most affected by the green light spectra. The significant difference in the behavioural profiling and scoring was recorded in the different groups of the juveniles of the fish.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2021-04-15

How to Cite

Kalkhundiya, A., Chand, J., Bhatt, P. K., Pathak, B. C., & M., S. (2021). Effects of Different Photoperiodic Regimes on the Body Mass, Behavioural and Stress Responses in Golden Mahseer, <i>Tor putitora</i>. Journal of Ecophysiology and Occupational Health, 21(1), 7–15. https://doi.org/10.18311/jeoh/2021/26276

Issue

Section

Articles
Received 2020-10-19
Accepted 2021-02-17
Published 2021-04-15

 

References

Trzebiatowski R, Filipiak J, Jakubowski R. Effect of stock density on growth and survival of rainbow trout (Salmo gairdneri Rich.). Aquaculture. 1981; 22(C):289295. https://doi.org/10.1016/0044-8486(81)90155-1.

Kashyap A, Chandra Pathak B, Awasthi M, Serajuddin M. Effect of different photoperiods on the growth and survival of juvenile of Indian major carp, Catla catla. Iran J Fish Sci. 2015; 14(4):946-955.

Imsland AK, Folkvord A, Stefansson SO. Growth, oxygen consumption and activity of juvenile turbot (Scophthalmus Maximus L.) reared under different temperatures and photoperiods. Netherlands J Sea Res.

; 34(1-3):149-159. https://doi.org/10.1016/00777579(95)90023-3.

SILVA-GARCIA, AJ. Growth of juvenile gilthead seabream (Sparus aurata L.) reared under different photoperiod regimes. Isr J Aquacult Bamidgeh [Internet]. 1996 [cited 2020 Oct 12]; 48:84-93. Available from: http://ci.nii.ac.jp/naid/10018292099/en/.

Purchase CF, Boyce DL, Brown JA. Growth and survival of juvenile yellowtail ¯ ounder Pleuronectes ferrugineus (Storer) under different photoperiods. Aquac Res. 2000; 31:547-552. https://doi.org/10.1046/ j.1365-2109.2000.00480.x.

Ruchin AB. Influence of colored light on growth rate of juveniles of fish. Fish Physiol Biochem. 2004; 30(2):175178. https://doi.org/10.1007/s10695-005-1263-4.

Rad F, Bozaoglu S, Ergene Gözükara S, Karahan A, Kurt G. Effects of different long-day photoperiods on somatic growth and gonadal development in Nile tilapia (Oreochromis niloticus L.). Aquaculture. 2006; 255(14):292-300. https://doi.org/10.1016/j.aquaculture.2005.11.028.

Taylor JF, North BP, Porter MJR, Bromage NR, Migaud H. Photoperiod can be used to enhance growth and improve feeding efficiency in farmed rainbow trout, Oncorhynchus mykiss. Aquaculture. 2006; 256(14):216-234. https://doi.org/10.1016/j.aquaculture.2006.02.027.

Valenzuela AE, Silva VM, Klempau AE. Qualitative and quantitative effects of constant light photoperiod on rainbow trout (Oncorhynchus mykiss) peripheral blood erythrocytes. Aquaculture. 2006; 251(2-4):596602. https://doi.org/10.1016/j.aquaculture.2005.06.012.

Bonnet E, Montfort J, Esquerre D, Hugot K, Fostier A, Bobe J. Effect of photoperiod manipulation on rainbow trout (Oncorhynchus mykiss) egg quality: A genomic study. Aquaculture. 2007; 268(1-4 SPEC. ISS.):13-22. https://doi.org/10.1016/j.aquaculture.2007.04.027.

Askarian F, Kousha A. The influence of photoperoid in farming Beluga sturgeon (Huso huso): Evaluation by growth and health parameters in serum. J Fish Aquat Sci. 2009; 4(1):41-49. https://doi.org/10.3923/jfas.2009.41.49.

Lee CJ, Paull GC, Tyler CR. Effects of environmental enrichment on survivorship, growth, sex ratio and behaviour in laboratory maintained zebrafish Danio rerio. J Fish Biol. 2019; 94(1):86-95. https://doi.org/ 10.1111/jfb.13865. PMid:30443966.

Fiszbein A, Cánepa M, Vázquez GR, Maggese C, Pandolfi M. Photoperiodic modulation of reproductive physiology and behaviour in the cichlid fish Cichlasoma dimerus. Physiol Behav. 2010; 99(4):425-432. https://doi.org/10.1016/j.physbeh.2009.11.017. PMid:20045426.

El-Sayed AFM, Kawanna M. Effects of photoperiod on the performance of farmed Nile tilapia Oreochromis niloticus: I. Growth, feed utilization efficiency and survival of fry and fingerlings. Aquaculture. 2004; 231(1-4):393402. https://doi.org/10.1016/j.aquaculture.2003.11.012.

Aragón-Flores EA, Martí­nez-Cárdenas L, HernándezGonzález C, Barba-Quintero G, Zavala-Leal OI, Ruiz-Velazco JM, et al. Effect of light intensity and photoperiod on growth and survival of the Mexican cichlid, Cichlasoma beani in culture conditions. Lat Am J Aquat Res. 2017; 45(2):293-301. https://doi.

org/10.3856/vol45-issue2-fulltext-5.

Mustapha MK, Okafor BU, Olaoti KS, Oyelakin OK. Effects of three different photoperiods on the growth and body coloration of juvenile African catfish, Clarias gariepinus (Burchell). Arch Polish Fish. 2012; 20(1):5559. https://doi.org/10.2478/v10086-012-0007-1.

Shahkar E, Kim DJ, Mohseni M, Khara H, Yun H, Bai SC. Effects of photoperiod manipulation on growth performance and hematological responses of juvenile caspian roach Rutilus rutilus caspicus. Fish Aquat Sci. 2015; 18(1):51-56. https://doi.org/10.5657/ FAS.2015.0051.

Maaswinkel H, Le X, He L, Zhu L, Weng W. Dissociating the effects of habituation, black walls, buspirone and ethanol on anxiety-like behavioral responses in shoaling zebrafish. A 3D approach to social behavior. Pharmacol Biochem Behav. 2013; 108:16-27. https:// doi.org/10.1016/j.pbb.2013.04.009. PMid:23603028.

Cachat J, Stewart A, Grossman L, Gaikwad S, Kadri F, Chung KM, et al. Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat Protoc [Internet]. 2010; 5(11):1786-99. Available from: http://dx.doi.org/10.1038/nprot.2010.140 https://doi.org/10.1038/nprot.2010.140. PMid:21030954.

Davison W. The effects of exercise training on teleost fish, a review of recent literature. Comp Biochem Physiol - A Physiol. 1997; 117(1):67-75. https://doi.org/10.1016/S0300-9629(96)00284-8.

Palstra AP, Planas JV. Swimming physiology of fish: Towards using exercise to farm a fit fish in sustainable aquaculture. Swim Physiol Fish Towar Using Exerc to Farm a Fit Fish Sustain Aquac. 2013; 1-429. https://doi.org/10.1007/978-3-642-31049-2.

Sarvi B. Breeding and rearing of Amphiprion clarkii in a commercial scale. 2012; (April).

Boeuf G, Le Bail PY. Does light have an influence on fish growth? Aquaculture. 1999; 177(1-4):129-152.

https://doi.org/10.1016/S0044-8486(99)00074-5.

Zutshi B, Singh A. Impact of Photoperiod as an Environmental Cue on Growth and Reproductive Performance in the Red Eyed Orange Molly (Poecilia sphenops). Proc Zool Soc. 2020; 73(1):25-31. https:// doi.org/10.1007/s12595-019-00294-6.

Akhtar MS, Ciji A, Sarma D, Rajesh M, Kamalam BS, Sharma P, et al. Reproductive dysfunction in females of endangered golden mahseer (Tor putitora) in captivity. Anim Reprod Sci [Internet]. 2017; 182:95-103. Available from: https://doi.org/10.1016/j.anireprosci.2017.05.004. PMid:28545985.

Nautiyal P. Erratum: Review of the art and science of Indian mahseer (Game Fish) from nineteenth to twentieth century: Road to extinction or conservation? (Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci DOI: 10.1007/s40011-013-0233-3). Proc Natl Acad Sci India Sect B - Biol Sci. 2014; 84(2):237. https://doi.org/10.1007/s40011-014-0317-8.

Bhatt JP, Pandit MK. Endangered Golden mahseer Tor putitora Hamilton: A review of natural history. Rev Fish Biol Fish. 2016; 26(1):25-38. https://doi.org/10.1007/ s11160-015-9409-7.

Arvedlund M, MIM and Abstract TA. Effects of photoperiod on growth of larvae and juveniles of the anemonefish Amphiprion melanopus. Aquac Res. 2000; 23(2):18-23.

Fuchs J. Influence de la photoperiode sur la croissance et la survie de la larve et du juvenile de sole (Solea solea) en elevage. Aquaculture. 1978;15(1):63-74. https://doi.org/10.1016/0044-8486(78)90072-78.

Barahona-Fernandes MH. Some effects of light intensity and photoperiod on the sea bass larvae (Dicentrarchus labrax (L.)) reared at the Centre Oceanologique de Bretagne. Aquaculture. 1979; 17(4):311-321. https:// doi.org/10.1016/0044-8486(79)90086-3.

Barlow CG, Pearce MG, Rodgers LJ, Clayton P. Effects of photoperiod on growth, survival and feeding periodicity of larval and juvenile barramundi Lates calcarifer (Bloch). Aquaculture. 1995; 138(1-4):159168. https://doi.org/10.1016/0044-8486(95)01073-4.

Pavlidis M, Greenwood L, Paalavuo M, Mölsä H, Laitinen JT. The effect of photoperiod on diel rhythms in serum melatonin, cortisol, glucose, and electrolytes in the common dentex, Dentex dentex. Gen Comp Endocrinol. 1999; 113(2):240-250. https://doi.org/10.1006/gcen.1998.7190. PMid:10082626.

Audet C, FitzGerald GJ, Guderley H. Photoperiod effects on plasma cortisol levels in Gasterosteus aculeatus. Gen Comp Endocrinol. 1986; 61(1):76-81. https://doi.org/10.1016/0016-6480(86)90251-0.

Singh S. Impact of color on marketing. Manag Decis. 2006; 44(6):783-789. https://doi.org/10.1108/ 00251740610673332.

Heydarnejad MS, Fattollahi M, Khoshkam M. Influence of light colours on growth and stress response of pearl gourami Trichopodus leerii under laboratory conditions. J Ichthyol. 2017; 57(6):908-912. https://doi.org/10.1134/S0032945217060054.

Zutshi B, Singh A. Interrelationship of photoperiod and feed utilization on growth and reproductive performance in the Red eyed orange molly (Poecilia sphenops). 2017; 209-346. https://doi.org/10.1101/20 9346.

Fujii R. The regulation of motile activity in fish chromatophores. Pigment Cell Res. 2000; 13(5):300-319.

https://doi.org/10.1034/j.1600-0749.2000.130502.x. PMid:11041206.

Abdul-Nabi Nasir N, Willaim Farmer K. Effects of different artificial light colors on the growth of juveniles common carp (Cyprinus carpio). Mesopo Environ J [Internet]. 2017;3(3):79-86. Available from: www.

bumej.com.

Bromage N, Porter M, Randall C. The environmental regulation of maturation in farmed finfish with special reference to the role of photoperiod and melatonin. Aquaculture. 2001;197(1-4):63-98. https://doi.org/10.1 016/S0044-8486(01)00583-X.

Villamizar N, Blanco-Vives B, Migaud H, Davie A, Carboni S, Sánchez-Vázquez FJ. Effects of light during early larval development of some aquacultured teleosts: A review. Aquaculture [Internet]. 2011; 315(1-2):8694. Available from: https://doi.org/10.1016/j.aquacul ture.2010.10.036.

Volpato GL, Bovi TS, de Freitas RHA, da Silva DF, Delicio HC, Giaquinto PC, et al. Red Light Stimulates Feeding Motivation in Fish but Does Not Improve Growth. PLoS One. 2013; 8(3):1-5. https://doi.org/10.1371/journal.pone.0059134. PMid: 23516606 PMCid:PMC3597620.

Villamizar N, Garcí­a-Alcazar A, Sánchez-Vázquez FJ. Effect of light spectrum and photoperiod on the growth, development and survival of European sea bass (Dicentrarchus labrax) larvae. Aquaculture [Internet]. 2009; 292(1-2):80-86. Available from: https://doi.org/ 10.1016/j.aquaculture.2009.03.045.

Cachat J, Stewart A, Utterback E, Hart P, Gaikwad S, Wong K, et al. Three-dimensional neurophenotyping of adult zebrafish behavior. PLoS One. 2011;6(3). https://doi.org/10.1371/journal.pone.0017597. PMid:21408171 PMCid:PMC3049776.

Stewart AM, Grieco F, Tegelenbosch RAJ, Kyzar EJ, Nguyen M, Kaluyeva A, et al. A novel 3D method of locomotor analysis in adult zebrafish: Implications for automated detection of CNS drug-evoked phenotypes. J Neurosci Methods. 2015;255 (January):66-74. Available from: https://doi.org/10.1016/j.jneumeth.2015.07.023. PMid:26238728.