Antibiotic Susceptibility Pattern of Methicillin-Resistant Staphylococcus aureus from the Isolated Wound Culture in the Northwest Region, Kingdom of Saudi Arabia

Ibrahim Al Balawi1, Palanisamy Amirthalingam2*, Abdullah Abdul Khalig Alyoussef3, Osama Salih Mohammed3, Hyder Oman Mirghani3 and Amgad A. Ezzat4

1Department of Surgery, Faculty of Medicine, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
2Department of Clinical Pharmacy, Faculty of Pharmacy, University of Tabuk, Tabuk, Kingdom of Saudi Arabia; amirpalanisamy15@gmail.com
3Department of Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
4Department of Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, Kingdom of Saudi Arabia

Abstract

The present study aimed to investigate the antibiotic susceptibility pattern of Methicillin-resistant Staphylococcus aureus (MRSA) in isolated wound cultures of the patients admitted in King Khalid Hospital, Tabuk, Kingdom of Saudi Arabia. A retrospective cohort study of 54 patients admitted with wound infections in the surgical department. Ethics committee approval was granted by the University of Tabuk and King Khalid Hospital, Kingdom of Saudi Arabia. Fifty-four adult patients (>18 years old) diagnosed with moderate to severe skin and soft tissue infections were included in the study. 26 patients with isolated cultures of MRSA were compared with 28 patients with Methicillin-sensitive Staphylococcus aureus (MSSA) isolated cultures using Graph pad prism 4.0 version statistical databases. Overall, there was no significant difference in sensitivity (P=0.2445) and resistance (P=0.4215) between MRSA and MSSA cultures. However, it is interesting findings that Oxacillin and Fusidic acid had higher resistance in MRSA isolated cultures compared MSSA culture, on the other hand, Linezolid, Tigecycline and Nitrofurantoin shows 100% sensitivity in both MRSA and MSSA isolates. No significant difference between male and female regarding the sensitivity (P=0.0638) and resistance (P=0.3638). The current study emphasizes that Tigecycline, Nitrofurantoin and Fusidic acid were the best drugs in both MRSA and MSSA isolates. While, oxacillin showed 100% resistance to MRSA; but retain its efficacy on MSSA isolates.

Keywords: Antibiotic, Cultures, Sensitive

1. Introduction

Wound infections have been a problem in the field of medicine for a long time. The presence of foreign materials increases the risk of serious infection even with relatively small bacterial inoculums1. Advances in control of infections have not completely eradicated this problem because of the development of drug resistance2. The widespread misuse of antibiotics over a long time have led to emergences of resistant organisms contributing to morbidity and mortality3–5. Antimicrobial resistance can increase complications and costs associated with procedures and treatment6.

The most common isolated aerobic microorganisms were Staphylococcus aureus, Coagulase-negative staphylococci (CoNS), Enterococci, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterobacter species, Proteus mirabilis, Candida albicans and Acinetobacter7,8.

Wound infections can be caused by different groups
of microorganisms like bacteria, fungi, and protozoa. However, different microorganisms can exist in polymicrobial communities especially in the margins of wounds and in chronic wounds. The infecting microorganism may belong to aerobic as most commonly isolated aerobic microorganism include Staphylococcus aureus, Coagulase-negative staphylococci (CoNS), Enterococci, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterobacter species, Proteus mirabilis, Candida albicans and Acinetobacter. The genus Staphylococcus includes pathogenic organisms in which Staphylococcus aureus is most important. It overcomes most of the therapeutic agents that have been developed in the recent years; hence, the antimicrobial chemotherapy for this species has always been empirical. After the emergence of MRSA as a nosocomial pathogen in the early 1960s, an increasing number of outbreaks due to MRSA infections in hospitals have been reported from many countries, ranging from abscesses to life-threatening sepsis, endocarditis, and osteomyelitis.

Early diagnosis of MRSA and treatment by following standard antibiotic guidelines will reduce morbidity and mortality rate in tertiary care hospitals. Understanding the antibiotic susceptibility pattern of MRSA in a specific geographic region is vital in the selection of the appropriate empirical antibiotic therapy. The present study was carried out to determine the antibiotic susceptibility pattern of MRSA from the isolated wound cultures, and update the clinicians about the optimal antibiotics to treat wound infections.

2. Methods

A retrospective study conducted at King Khalid Hospital in Tabuk City during the period from June to December 2014, following the ethical guidelines for patient data privacy fifty-four wound cultures of adult patients (>18 years old) and sensitivity forms referred from the surgeons from the surgical department were reviewed. The research was cleared by the ethical committee of the University of Tabuk and King Khalid Hospital, Tabuk, Kingdom of Saudi Arabia. Graph pad Instat Prism 4.0 version was used for data analysis. The t-test was performed to compare the sensitivity and resistance pattern between MRSA and Methicillin-sensitive Staphylococcus aureus (MSSA) isolates.

Information collected includes: sex, type of specimen included is wounds. Media used for bacterial isolation was carried using the serial dilution technique on the wound swabs to isolate Staphylococcus aureus.

2.1 Specimen Collection

Samples were collected from the patients with complaints of wound sepsis. The wound samples were collected by using a sterile cotton swab, the inner surface of the infected area was swabbed gently and then the swabs were transported to the laboratory.

2.2 Bacteriology and Antibiotic Susceptibility Testing

Bacterial isolation according to morphology followed according to Benson et al., 1994. Antibiotic sensitivity test was performed by using the Kirby-Bauer disk diffusion method recommended by the National Committee for Clinical Laboratory Standard (NCCLS, 2000) for the following antibiotics: cefoxitin, penicillin, oxacillin, gentamicin, tobramycin, levofloxacin, moxifloxacin, erythromycin, clindamycin, linezolid, teicoplanin, vancomycin, tetracycline, tigecycline, fosfomycin, nitrofurantoin, fusidic acid, mupirocin, rifampicin, trimethoprim-sulphamethoxazole etc. The Vitex 12, Phoenix, and Micro scans were used. MRSA test was performed using cefoxitin 30 µg disc on Mueller-Hinton agar with 24 hours incubation at 35°C. The antibiotic discs used for the susceptibility tests were from Hi-Media Laboratories Pvt. Limited, India. A zone of inhibition less than 10 mm or any discernible growth within a zone of inhibition was indicative of methicillin resistance. Staphylococcus aureus ATCC 25923 (Manassas, VA, USA) was used as a standard control strain.
Table 1. Minimum inhibitory concentration (MIC) of the antibiotics

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Antibiotic</th>
<th>MIC*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cefoxitin</td>
<td>POS**</td>
</tr>
<tr>
<td>2</td>
<td>Penicillin</td>
<td>≥0.5</td>
</tr>
<tr>
<td>3</td>
<td>Oxacillin</td>
<td>≥4</td>
</tr>
<tr>
<td>4</td>
<td>Gentamicin</td>
<td>≥16</td>
</tr>
<tr>
<td>5</td>
<td>Tobramycin</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Levofloxacin</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>Moxifloxacin</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Erythromycin</td>
<td>≥8</td>
</tr>
<tr>
<td>9</td>
<td>Clindamycin</td>
<td>≤0.25</td>
</tr>
<tr>
<td>10</td>
<td>Linezolid</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>Teicoplanin</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>Vancomycin</td>
<td>≤0.5</td>
</tr>
<tr>
<td>13</td>
<td>Tetracycline</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>Tigecyclin</td>
<td>≤0.12</td>
</tr>
<tr>
<td>15</td>
<td>Fosfomycin</td>
<td>32</td>
</tr>
<tr>
<td>16</td>
<td>Nitrofurantoin</td>
<td>≤16</td>
</tr>
<tr>
<td>17</td>
<td>Fusidic acid</td>
<td>≥32</td>
</tr>
<tr>
<td>18</td>
<td>Mupirocin</td>
<td>≤2</td>
</tr>
<tr>
<td>19</td>
<td>Rifampicin</td>
<td>≤0.5</td>
</tr>
<tr>
<td>20</td>
<td>Trimethoprim+ Sulphamethoxazole</td>
<td>≥320</td>
</tr>
</tbody>
</table>

*MIC: Minimum Inhibitory Concentration
**POS: Positive

3. Results

Out of 199 wound sepsis samples at the King Khalid Hospital, Tabuk, Kingdom of Saudi Arabia, July to December 2014, predominant *Staphylococcus aureus* (27%; n=54) followed by *Pseudomonas aeruginosa* (20%; n=39), *E. coli* (15%; n=30) etc. (Figure 1). Among the *Staphylococcus aureus*, MRSA resistance (48%) and 28 (52%) with MSSA resistance (Figure 2) observed in the *Staphylococcus aureus* isolates. Gender distribution reveals predominant male population in MRSA (n=25; 96%) and MSSA resistance samples (n=16; 57%) (Figure 3).

3.1 Association Antibiotic Sensitivity and MRSA

Linezolid, Teicoplanin, Vancomycin, Tigecycline, Nitrofurantoin and Mupirocin were found to have 100% sensitivity against MRSA isolates; however, Penicillin and Oxacillin were found to be 100% resistant. On the other hand, Gentamycin, Tobramycin, Linezolid, Tetracycline, Fosfomycin and Nitrofurantoin were found to have 100% sensitivity against MSSA isolates. Both sensitivity (P=0.2445) and resistance (P=0.4215) were found statistically not significant. However, a significant difference was observed between isolates of MRSA sensitivity and resistance (P<0.0001). Similarly, MSSA isolates also shows a significant difference (P<0.0001). Interestingly, the present study observed some findings as follows 1. Oxacillin shows 96% sensitivity in MSSA isolates and 0% sensitivity in MRSA isolates, 2. Fusidic acid was 93% sensitivity in MSSA Vs. 46% in MRSA isolates. 3. Linezolid, Tigecycline, and Nitrofurantoin shows 100% sensitivity in both MRSA and MSSA isolates (Table 2).
Antibiotic Susceptibility Pattern of Methicillin-Resistant Staphylococcus aureus from the Isolated Wound Culture in the Northwest Region, Kingdom of Saudi Arabia

3.2 Antibiotic Sensitivity in MSSA among the Gender Distribution

In the present study, we thought to investigate the sensitivity of MSSA among the gender. While cefoxitin and penicillin were found to have 100% resistance in both genders, Tetracycline, Tigecycline, Nitrofurantoin were found to have 100% sensitive in both genders. On the contrary, rifampicin was found to have 25% and 56% sensitivity for male and female respectively. However, no statistical significance between male and female in both culture sensitivity and resistance. Although, a significant difference was noted between sensitivity and resistance in both male and female (P<0.0001) Table 3.

4. Discussion

The aim of the present study is to understand the association of wound culture and MRSA, since the wound is most commonly caused by MRSA, which is well documented already15. MRSA is a challenging issue in healthcare during the selection of antibiotic across the world. In Saudi Arabia, its prevalence keeps uprising with significant morbidity and mortality. The present study shows 48% MRSA among the fifty-four isolates, by a study conducted the by Ghazal et al., 2010 in Saudi Arabia16.

Draghi et al., 200617 and Neela et al., 200818 already reported the sensitivity of Vancomycin, Linezolid, and Teicoplanin. The present study substantiates the same result and in addition, to that the present study exploring the sensitivity of Nitrofurantoin and Mupirocin. Although Madani et al., 200119 reported vancomycin resistance is emerging problem, our study shows 100% sensitivity (Table 2).

Nagwa et al., 201220 indicates variable resistance towards tetracycline, rifampicin, trimethoprim/sulphamethoxazole, levofloxacin, erythromycin, and clindamycin, etc. and the present study substantiates the same (Table 2). However, the present study indicates levofloxacin found to have 12% resistance in contrast to the result of Nagwa et al., 201220 showing 66% resistance. This discrepancy mandates further study with larger samples.

Oxacillin was found to have 100% resistance in MRSA isolates and 4% resistance in MSSA isolates. Yasoka Hosaka et al., 2006 already addressed this issue in their
earlier report that when treating OS-MRSA infections, we should take precautions because treatment with β-lactam antibiotics may cause the emergence of high-resistant MRSA (HA-MRSA type), which is attributable to the presence of the *mecA* gene. Balode et al., 2013 and Yao et al., 2009 reported the effectiveness of Tigecycline and Linezolid respectively on MRSA and the present study consistent with their statement.

The present study made an attempt to understand the impact of the gender on antibiotic susceptibility of MSSA and the result shows no significant difference between male and female which is in agreement with Kimberly et al., 2013. However, due to the small size of females among (3.8%; n=1) MRSA isolates, it was impossible to compare with males. Our study claims more studies with larger sample size to address this issue.

5. Conclusion

The current study recommends Linezolid, Tigecycline and Nitrofurantoin can be used as drugs of choice in both MRSA and MSSA isolates. However, Oxacillin should not be used in MRSA isolates, additionally cefoxitin not to be used in MSSA. The study is useful to understand antibiotic susceptibility in Tabuk, which is located in the north-west region of Saudi Arabia and also to guide the clinicians choosing empirical antibiotic treatment.

6. Acknowledgement

The authors would like to acknowledge the financial support of this work from the Deanship of Scientific Research (DSR), University of Tabuk, Saudi Arabia under grant number S-0093-1436.

7. References

4. Sani RA, Garba, Oyewole OA. Antibiotic resistance profile...
10. Available from: http://www.worldwidewounds.com