Effectiveness of Kampo Medicines Against Intractable Stomatitis: A Mini-Review


Affiliations

  • Tokushima University, Graduate Faculty of Dentistry, Department of Oral Medicine, Institute of Biomedical Sciences, Tokushima, 770-8504, Japan
  • Tokushima University, Faculty of Dentistry, Department of Oral Medicine, Institute of Biomedical Sciences, Tokushima, 770-8504, Japan

Abstract

Intractable stomatitis is a chronic inflammatory disease of oral mucosa, with unclear etiopathogenesis. Kampo Medicines (KMs), i.e., Japanese herbal medicines, effectively treat stomatitis. The precise effects of KMs on intractable stomatitis are not established. We present the details of several patients with intractable stomatitis who were well-treated with KMs (i.e., Inchinkoto, Orento, Goreisan, and Byakkokaninjinto). We also review the literature on the link between intractable stomatitis and KMs. KM-related anti-inflammatory and antioxidant activity may suppress intractable stomatitis. KMs may also facilitate wound healing through increased saliva secretion. KMs may therefore be useful for the treatment of intractable stomatitis.


Subject Collection

Anti-Inflammatory Activity, Antioxidant Activity, Intractable Stomatitis, Kampo Medicines, Saliva Secretion

Subject Discipline

Dentistry

Full Text:

References

Rogers RS. Recurrent aphthous stomatitis: clinical characteristics and associated systemic disorders. Semin Cutan Med Surg. 1997; 16:278–83. https://doi.org/10.1016/ S1085-5629(97)80017-X

Jurge S, Kuffer R, Scully C, Porter SR. Recurrent aphthous stomatitis. Oral Dis. 2006; 12:1–21. https://doi.org/10.1111/ j.1601-0825.2005.01143.x PMid:16390463

Baccaglini L, Lalla RV, Bruce AJ, Sartori-Valinotti JC, Latortue MC, Carrozzo M, et al. 3rd Urban legends: Recurrent aphthous stomatitis. Oral Dis. 2011; 17:755– 70. https://doi.org/10.1111/j.1601-0825.2011.01840.x PMid:21812866 PMCid:PMC3192917

Sugerman PB, Savage NW, Zhou X, Walsh LJ, Bigby M. Oral lichen planus. Clin Dermatol. 2000; 18:533–9. https://doi.org/10.1016/S0738-081X(00)00142-5

Sugerman PB, Savage NW. Oral lichen planus: Causes, diagnosis and management. Aust Dent J. 2002; 47:290–7. https://doi.org/10.1111/j.1834-7819.2002.tb00540.x

Sugerman PB, Savage NW, Walsh LJ, Zhao ZZ, Zhou XJ, Khan A, et al. The pathogenesis of oral lichen planus. Crit Rev Oral Biol Med. 2002; 13:350–65. https://doi.org/10.1177/154411130201300405 PMid:12191961

Ertugrul AS, Arslan U, Dursun R, Hakki SS. Periodontopathogen profile of healthy and oral lichen planus patients with gingivitis or periodontitis. Int J Oral Sci. 2013; 5:92–7. https://doi.org/10.1038/ijos.2013.30 PMid:23743616 PMCid:PMC3707073

Zheng LW, Hua H, Cheung, LK. Traditional Chinese medicine and oral diseases: today and tomorrow. Oral Dis. 2011; 17:7–12. https://doi.org/10.1111/j.16010825.2010.01706.x PMid:20646230

Ergun S, Troşala SC, Warnakulasuriya S, Özel S, Önal AE, Ofluoğlu D, et al. Evaluation of oxidative stress and antioxidant profile in patients with oral lichen planus. J Oral Pathol Med. 2011; 40:286–93. https://doi.org/10.1111/ j.1600-0714.2010.00955.x PMid:21039889

Yamaguchi K. Traditional Japanese herbal medicines for treatment of odontopathy. Front Pharmacol. 2015; 6:176. https://doi.org/10.3389/fphar.2015.00176 PMid:26379550 PMCid:PMC4551818

Dragland S, Senoo H, Wake K, Holte K, Biomhoff R. Several culinary and medicinal herbs are important sources of dietary antioxidants. J Nutr. 2003; 133:1286–90. https://doi.org/10.1093/jn/133.5.1286 PMid:12730411

Koo HJ, Lim KW, Jung HJ, Park EH. Anti-inflammatory evaluation of gardenia extract, geniposide and genipin. J Ethnopharmacol. 2006; 103:496–500. https://doi.org/10.1016/j.jep.2005.08.011 PMid:16169698

Nishimura K, Osawa T, Watanabe K. Evaluation of oxygen radical absorbance capacity in Kampo medicine. Evid Based Complement Alternat Med. 2011; 2011:812163. https://doi.org/10.1093/ecam/nen082 PMid:19126557 PMCid:PMC3137646

Lee H, Zerin T, Kim YH, Lee BE, Song HY. Immunomodulation potential of Artemisia capillaris extract in rat splenocytes. Int J Phytomed. 2013; 5:356–61.

Thongprasom K, Dhanuthai K, Sarideechaigul W, Chaiyarit P, Chaimusig M. Expression of TNF-alpha in oral lichen planus treated with fluocinolone acetonide 0.1%. J Oral Pathol Med. 2006; 35:161–6. https://doi.org/10.1111/ j.1600-0714.2006.00392.x PMid:16454812

Cui RZ, Bruce AJ, Rogers RS. Recurrent aphthous stomatitis. Clin Dermatol. 2016; 34:475–81. https://doi.org/10.1016/j.clindermatol.2016.02.020 PMid:27343962

Pham TQ, Cormier F, Farnworth E, Van Hang Tong, MarieRose Van Calsteren. Antioxidant properties of crocin from gardenia jasminoides ellis and study of the reactions of crocin with linoleic acid and crocin with oxygen. J Agric Food Chem. 2000; 48:1455–61. https://doi.org/10.1021/jf991263j PMid:10820042

Seo HC, Suzuki M, Ohnishi-Kameyama M, Oh MJ, Kim HR, Kim JH, et al. Extraction and identification of antioxidant components from Artemisia capillarisherba. Plant Foods for Human Nutrition. 2003; 58:1–12. https:// doi.org/10.1023/B:QUAL.0000040355.60922.08

Öztürk M, Aydoğmuş-Öztürk F, Duru ME, Topçu G. Antioxidant activity of stem and root extracts of Rhubarb (Rheum ribes): An edible medicinal plant. Food Chemistry. 2007; 103:623–30. https://doi.org/10.1016/j.foodchem.2006.09.005

Debnath T, Park PJ, Deb Nath NC, Samad NB, Park HW, Lim BO. Antioxidant activity of Gardenia jasminoides Ellis fruit extracts. Food Chem. 2011; 128:697–703. https://doi.org/10.1016/j.foodchem.2011.03.090

Takeoka GR, Dao L, Harden L, Pantoja A, Kuhl JC. Antioxidant activity, phenolic and anthocyanin contents of various rhubarb (Rheum spp.) varieties. Int J Food Sci Technol. 2013; 48:172–8. https://doi.org/10.1111/j.13652621.2012.03174.x

Itoh K, Chiba S, Takahashi T, Ishii T, Igarashi K, Katoh Y, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997; 236:313–22. https://doi.org/10.1006/bbrc.1997.6943

Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, et al. Transcriptional factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem. 2000; 275:16023–9. https://doi.org/10.1074/ jbc.275.21.16023 PMid:10821856

Jaiswal AK. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med. 2004; 36:1199–207. https://doi.org/10.1016/j.freeradbiomed.2004.02.074 PMid:15110384

Okada K, Shoda J, Kano M, Suzuki S, Ohtake N, Yamamoto M, et al. Inchinkoto. An herbal medicine, and its ingredients dually exert Mrp2/MRP2 mediated choleresis and Nrf2mediated antioxidative action in rat livers. Am J Physiol Gastrointest Liver Physiol. 2007; 292:G1450–63. https://doi.org/10.1152/ajpgi.00302.2006 PMid:17038627

Lee HS, Kim BS, Kim MK. Suppression effect of Cinnamomum cassia bark-derived component on nitric oxide synthase. J Agric Food Chem. 2002; 50:7700–3. https://doi.org/10.1021/jf020751f PMid:12475291

Charles DJ. Antioxidant properties of spices, herbs and other sources. Food Science and Nutrition; 2012. p. 231–43.

Hong JW, Yang GE, Kim YB, Eom SH, Lew JH, Kang H. Anti-inflammatory activity of cinnamon water extract in vivo and in vitro LPS-induced models. BMC Complement Altern Med. 2012; 12:237. https://doi.org/10.1186/14726882-12-237 PMid:23190501 PMCid:PMC3533872

Matsumoto C, Sekine E, Nyui M, Ueno M, Nakanishi I, Omiya Y, et al. Analysis of the antioxidative function of the radioprotective Japanese traditional (Kampo) medicine, hangeshashinto, in an aqueous phase. J Radiat Res. 2015; 56:669–77. https://doi.org/10.1093/jrr/rrv023 PMid:25883171 PMCid:PMC4497396

Aburad T, Ikarashi N, Kagami M, Ichikawa Y, Sugitani M, Maniwa A, et al. Byakkokaninjinto prevents body water loss by increasing the expression of kidney aquaporin-2 and skin aquaporin-3 in KKAy mice. Phytother Res. 2011; 25:897– 903. https://doi.org/10.1002/ptr.3358 PMid:21110398

Verkman AS. Aquaporins in clinical medicine. Annu Rev Med. 2012; 63:303–16. https://doi.org/10.1146/annurevmed043010-193843 PMid:22248325 PMCid:PMC3319404

Guo L, Chen H, Li Y, Zhou Q, Sui Y. An aquaporin 3-Notch1 axis in keratinocyte differentiation and inflammation. PLoS ONE. 2013; 8:e80179. https://doi.org/10.1371/journal.pone.0080179 PMid:24260356 PMCid:PMC3832656

Hara-Chikuma M, Verkman AS. Aquaporin-3 facilitates epidermal cell migration and proliferation during wound healing. J Mol Med. 2008; 86:221–31. https://doi.org/10.1007/s00109-007-0272-4 PMid:17968524

Yanagi Y, Yasuda M, Hashida K, Kadokura Y, Yamamoto T, Suzaki H. Mechanism of salivary secretion enhancement by Byakkokaninjinto. Biol Pharm Bull. 2008; 31:431–5. https:// doi.org/10.1248/bpb.31.431 PMid:18310905

Ara T, Hattori T, Imamura Y, Wang PL. Development of novel therapy for oral diseases using Kampo medicines. J Oral Biosci. 2010; 52:100–6. https://doi.org/10.1016/S13490079(10)80038-6

Ishikawa Y, Ishida H. Aquaporin water channel in salivary glands. Jpn J Pharmacol. 2000; 83:95–101. https://doi.org/10.1254/jjp.83.95 PMid:10928320


Refbacks

  • There are currently no refbacks.