Reduction in Excretion in *Achaea janata* Larvae due to *Bacillus thuringiensis* and Calcium arsenate Treatments

K.L. SRIVASTAVA
Division of Entomology
Indian Agricultural Research Institute
New Delhi - 110 012

Bacillus thuringiensis has been reported to cause mortality in the castor semilooper, *Achaea janata* Linn. larvae (Govindrajan *et al.*, 1976 and Srivastava, 1983). In ten day old larvae of *A. janata*, Srivastava and Chattoraj (1986) observed inhibition of feeding initially, when released on castor leaves treated with *B. thuringiensis*. Ignotto *et al.* (1964) reported reduction in number of faecal pellets in *B. thuringiensis* treated larvae of cotton leaf worm, *Alabama argillacea* (Hubner). Morris (1963) reported quantitative reduction of faeces in some forest pests treated with *B. thuringiensis*. The present study deals with the effect of *B. thuringiensis* products *viz.*, E-61, Bactospeine and Dipel on the amount of frass excreted by the larvae of *A. janata*. Since the action of *B. thuringiensis* was similar to that of stomach poison (Cookery, 1971), a comparison has been made with calcium arsenate.

A. janata larvae were reared according to methods described by Srivastava and Chattoraj (1986). Ten day old larvae were used in the experiment. *B. thuringiensis* products (I U) tested were (a) E-61, (1000 International units/mg of product, *Anagasta kuhniella*) Pasteur Institute, Paris, France (b) Bactospeine (2000 IU/mg *A. k.* Voltas (India) Ltd., Bombay, India and (c) Dipel (16000 IU/mg *T. ni*) Abbott’s Laboratories, New Delhi, India. Calcium arsenate was obtained

Table 1. Effect of calcium arsenate and *B. thuringiensis* on the quantum of faeces excreted by the larvae of *A. janata*

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Calcium arsenate</th>
<th>Weight (mg) / larva</th>
<th>Bacillus thuringiensis</th>
<th>Control</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 4</td>
<td>27.88 (5.32)</td>
<td>15.82 (3.98)</td>
<td>13.05 (3.66)</td>
<td>12.37 (3.57)</td>
<td>31.76 (5.66)</td>
</tr>
<tr>
<td>4 - 20</td>
<td>1.83 (1.52)</td>
<td>1.80 (1.51)</td>
<td>1.62 (2.14)</td>
<td>1.99 (2.18)</td>
<td>97.65 (9.88)</td>
</tr>
<tr>
<td>20 - 24</td>
<td>0.00 (0.71)</td>
<td>0.00 (0.71)</td>
<td>0.00 (0.71)</td>
<td>0.00 (0.71)</td>
<td>35.48 (5.97)</td>
</tr>
<tr>
<td>24 - 44</td>
<td>0.00 (0.71)</td>
<td>0.00 (0.71)</td>
<td>0.00 (0.71)</td>
<td>0.00 (0.71)</td>
<td>132.13 (11.46)</td>
</tr>
<tr>
<td>Mean</td>
<td>7.42 (2.06)</td>
<td>4.40 (1.72)</td>
<td>3.66 (1.80)</td>
<td>3.59 (1.78)</td>
<td>74.25 (8.24)</td>
</tr>
</tbody>
</table>

Figures in parentheses are transformed values $\sqrt{X + 0.5}$

C.D. (P = 0.01)

- Treatment: 0.52
- Period: 0.47
- Interaction: 0.39
from Chemical de universe, New Delhi. The dilutions were prepared and administered as per the method outlined by Srivastava (1983). A total number of 30 larvae in three replications were used in each experiment. Faeces were collected on clean butter paper and weighed immediately after collection. Wet faeces was weighed on monopan balance at intervals of 4, 20, 24 and 44 h. The data were subjected to analysis of variance.

The data indicated that the quantity of faecal pellets excreted by insects exposed to the treatments were significantly less than in untreated control (Table 1). At 4 h, there was no significant difference between the B. thuringiensis treatments but they recorded lower levels than in calcium arsenate. However, there was no significant difference between B. thuringiensis and calcium arsenate at 20, 24, and 44 h post treatment. Morris (1963, 1972) reported that the faecal matter collected from B. thuringiensis -treated larvae of some forest pests were lesser than in control. Ignoffo et al. (1964), using the number of faecal pellets as one of the criteria to determine the extent of larval feeding, reported that the larvae of A. argillacea exposed to untreated leaves produced at least ten times and in some cases thirty times the number of pellets per larva as compared to those treated with B. thuringiensis. In the present study, during the 4 h period, the larvae produced 15.82, 13.05, 12.37 mg of faecal matter in E-61, Bactospeine and Dipel respectively and 31.76 mg in untreated control. The overall mean defaecation upto 44 h, were 4.40, 3.66 and 3.59 mg respectively, in E-61, Bactospeine and Dipel but it was 74.25 mg in untreated control. This showed that there was poor feeding by A. janata larvae in B. thuringiensis treatments. This reduction in faecal pellets, according to Morris (1963) was due to the fact that the larvae in treatments fed rather poorly. Srivastava (1988) recorded that the ten day old larvae of A. janata fed 1.00, 1.06 and 0.88 Cm² of leaf area in E-61, Bactospeine and Dipel respectively in 4 h whereas it fed 5.15 cm² area in untreated control. After 4h., there was no feeding in different treatments but larvae in control fed normally. Thus, it may be surmised that in A. janata, the poor defaecation in B. thuringiensis was due to poor feeding by the larvae. According to Heimpel and Angus (1963), B. thuringiensis toxins damaged the epithelial cells of midgut of Bombyx mori resulting in aperistalsis and inhibition of feeding.

KEY WORDS: Achaea janata, Bacillus thuringiensis, calcium arsenate, excretion

REFERENCES

