

Research Article

Intraguild predation and biosafety of entomopathogenic nematode, *Heterorhabditis* bacteriophora Poinar et al., and its bacterial symbiont, *Photorhabdus luminescens*, to parasitoid, *Trichogramma chilonis* Ishii and predator *Chrysoperla zastrowi sillemi* (Esben, Petersen)

Y. LALITHA, M. NAGESH and S. K. JALALI

National Bureau of Agriculturally Important Insects, P.B. No. 2491, H.A. Farm Post, Hebbal, Bangalore 560 024 Corresponding author E-mail: nagesh55@yahoo.com

ABSTRACT: Intraguild predation (IGP) appears to be pervasive among communities of biocontrol agents associated with nematode sharing the host with trophic interaction. Entomopathogenic nematode (*Heterorhabditis bacteriophora*) and its associated bacterium (*Photorhabdus luminescens*); an egg parasitiod, *Trichogramma chilonis* and a predator *Chrysoperla zastrowi sillemi* were selected for present study. There was no adverse effect of *H. bacteriophora* and *P. luminescens* observed on adult emergence of *T. chilonis*. Microscopic examination of eggs, larvae and adults of *T. chilonis* and *C. z. sillemi* treated with *H. bacteriophora*, *P. luminescens* and cell-free culture filtrates of *P. luminescens*, exhibited no deformity, discoloration or infection of organisms. Similarly, *H. bacteriophora*, *P. luminescens* or the cell-free culture filtrates exhibited no adverse activity on egg hatching or larvae of *C. z. sillemi* indicating that there was no intraguild competition under artificial epiphytotic conditions between the organisms under report, viz., *H. bacteriophora*, its associated bacterium (*P. luminescens*), *T. chilonis* and *C. z. sillemi*.

KEY WORDS: Intraguild predation, entomopathogenic nematode, *Heterorhabditis bacteriophora*, *Photorhabdus luminescens*, *Trichogramma chilonis*, *Chrysoperla zastrowi sillemi*

(Article chronicle: Received: 13-01-2012; Revised: 14-12-2012; Accepted: 26-12-2012)

INTRODUCTION

Intraguild predation (IGP) occurs when two species that share a host or also engage in a trophic interaction with each other (parasitism or predation), different entomopathogenic nematode-bacterium complexes, biology, life cycle and vertebrate safety and related legislative issues, exchange of germplasm, commercial aspects, post application persistence, transgenic and defined the boundaries with pathogenic bacteria of medical, veterinary or agronomic importance and sustainability of wild and transgenic entomopathogenic nematode-bacterium complexes in the field were well studied (Jansson, 1993; Rosenheim et al., 1995; Richardson, 1996; Rizvi et al., 1996; Boemare et al., 1996, Ehlers, 1996; Smits, 1996; Gaugler et al. 1997). Kaya (1978) reported susceptibility of adults Apanteles militaris (Hymenoptera: Braconidae), parasitoid of the armyworm, Pseudaletia unipuncta and its larvae. Similar results were recorded during his study with the tachinid parasite Compsilura concinnatau (Diptera: Tachinidae) to *Neoaplectana carpocapsaeu* (Nematoda: Steinernematidae) and its associated bacterium, Xenorhabdus nematphilus in 1984. Haag & Boucias (1991) reported in their study

to test the infectivity of the insect pathogens to weed control agent *Neochetina eichhorniea* that 2 strains of *Steinernema carpocapsae* resulted in 60–70% adult mortality.

Among several parasitoids and predators recorded as natural enemies of several insect pests, *Trichogramma* and *Chrysoperla* have the distinction of reaching commercial use against several lepidopteran pests. These parasitoids are most widely used for biological control in more than 30 countries, with use in recent years covering a total area of 32 million ha of agricultural and forestry land (Li, 1994). The chrysopid larvae are predaceous, feeding on the eggs and neonate larvae of lepidopterans, nymphs and adults of whiteflies, aphids and other homopterans. Among 69 species of chrysopids recorded in India, *Chrysoperla zastrowi sillemi* is the most common species (Jalali *et al.*, 2003).

Beneficial organisms including entomopathogenic nematodes, their associated bacteria, chrysopid predator, trichogrammatid parasitoid share common insect species as hosts, although vary in infectivity/predation/parasitism to life-cycle stages of insect hosts. Hence, their field success as biological control agents either individually or in combinations, depends also on their cross-infectivity and suppressivity. In other words, the biological control agents preferably must be non-inhibitory and minimal in IGP.

The field evaluations proved the insecticidal virulence of the Photorhabdus luminescens bacterium against the cabbage white butterfly, Pieris brassicae (Linnaeus) (Mohan et al., 2003), mango mealybug, Drosicha mangiferae (Green) (Mohan et al., 2004) and the pupae of the diamond-back moth, Plutella xylostella (Linnaeus) (Razek-Abdel, 2003). The bacterium is reported to be non-toxic to humans and mammals and differs genetically from the human clinical isolate P. asymbiotica (Fischer-Le Saux et al., 1999). Subsequently, Mohan and Sabir (2005) reported that P. luminescens from H. bacteriophora adversely affected trichogrammatids. The results suggest conflicting report of its safety. Therefore, in the present study laboratory screening of P. luminescens against T. chilonis and C. z. sillemi to examine the toxicity and biosafety in pure culture, its culture filtrate and in natural association with its nematode host, using two protocols for comparison - Standard IOBC protocol and in comparison method adopted by Mohan and Sabir (2005) in order to avoid experimental differences.

MATERIALS AND METHODS

Nematode

Monoxenic infective juveniles (IJs) of *Heterorhabditis* bacteriophora (strain PDBC Hbb1) were established by collecting freshly emerged infective juveniles from *Galleria mellonella* cadavers and washing them 5 times in sterile dH_2O , followed by surface sterilizing with 0.1% Hymine (methyl benzothionium chloride) solution and several rinses with sterile distilled water.

Bacterial cultures and insect infection

Isolation of symbiotic bacterium, P. luminescens

Pure culture of *P. luminescens* was isolated from haemolymph of *G. mellonella* cadavers infected with *H. bacteriophora* on Mac Conkey medium as per Akhurst (1980). Five healthy and robust 5th instar larvae of *G. mellonella* were inoculated with 100 monoxenic infective juveniles (IJs) of *H. bacteriophora* by moist filter paper method in sterile Petri plates and incubated at 28°C. After 72h of inoculation, the cadavers of *G. mellonella* were surface-sterilized with 70% ethanol for 1 min., ignited and plunged in sterile dH₂O. The surface-sterilized cadavers of G. mellonella were punctured with a sterile needle and the haemolymph was streaked out onto NBTA medium (Akhurst, 1980). Colonies of P. luminescens were identified by their cell and colony morphology and matched with primary phase characteristics as described by Akhurst (1980). Single cell colonies of the bacterium were then transferred to autoclaved 2% proteose peptone medium (PP₂) and incubated for 48 hours at 28°C on a rotary shaker (Sciegenics Make) at 90 rpm in dark. Bacterial cells of P. luminescens from 48 hours-old proteose peptone medium (PP₂) were obtained separately by spinning at 4,000 x g for 5mins. The bacterial cells were re-suspended in phosphate buffered saline (PBS), washed thrice before finally making a stock of bacterial suspension in phosphate buffered saline (PBS) and used for further experimental treatments. In another set, cell free culture filtrates were obtained by ultra filtration using 0.23µm filter paper and then using the culture filtrate for treatments.

Natural enemy selection and maintenance

Two freshly collected and identified species of natural enemies *T. chilonis* and *C. z. sillemi* used for testing against bacterium were reared on *Corcyra cephalonica* Stainton eggs in the laboratory for the past 20 years and were designated as susceptible. Both species were maintained at $26\pm1^{\circ}$ C and $65\pm5\%$ relative humidity.

Bacterium and its preparation Testing protocol

Six different treatments were screened against *T. chilonis* and *C. z. sillemi* in the present study. Two methods were employed to test the effect on adult emergence, adult mortality and parasitism by female of *T. chilonis*; egg hatching, larval and adult survivability of *C. z. sellimi*. In the first method IOBC protocol was followed as suggested by Hassan *et al.* (1985). The treatments imposed were:

- T₁ No treatment
- T₂ Dry filter paper

 T_3 Freshly emerged *H. bacteriophora* NBAIIHbb1 infective juveniles (5000 IJs)

- T_4 Nutrient broth
- T₅ P. luminescens cell suspension
- T₆ Cell-free cuture filtrate of P. luminescens
- T_{γ} Sterile distilled water (SDW)

To test the effect of treatments on immature stages (pupal stage of T. chilonis and egg and larval stages of Chrysoperla) and adults, a clear plastic container (6 x 6 x 2cm³) was modified into a testing unit. One window on four sides was cut, and fine brass wire-mesh (80 mesh size) was heat-sealed across them to provide aeration. A layer of foam was fixed on all sides of the lid to make the testing unit insect escape-proof. The area of the testing unit was calculated 72cm² and the prepared solution (0.05 ml) was sprayed with an atomizer over C. cephalonica eggs parasitized by T. chilonis 1, 2, 3, 4, 5, 6 and 7 days after parasitisation. Sample card containing 100 parasitized eggs of each day was considered per replication. The egg cards were kept in the testing units spraved with various treatments. The testing units containing sprayed egg cards were sealed tightly and kept in incubator maintained at 28°C.

For immature stages of C. z. sillemi, 1, 2 and 3 days old eggs and 1st, 2nd and 3rd instar stage larvae were tested in a similar manner as described for T. chilonis except for each stage 10 eggs or 10 larvae were used per replication. Toxicity to adults of T. chilonis and C. z. sillemi was tested as suggested in IOBC protocol (Hassan, 1980, 1985; Elzen, 1998). A Borosil glass tube opened both sides was used a the testing unit and was spraved with the solutions and allowed to shade dry. One end of the dried tube was closed tightly with double layered black cloth and adults were allowed to move inside the tube from the other end. Movement of adequate number of adults was followed by closing of the end by double layered black cloth to permit the test organism in continuous surface contact with the treated surface and to avoid death of the adult due to suffocation. Fine streak of 50% diluted honey was provided. Hundred adults of T. chilonis and 10 adults of C. z. sillemi were introduced in each unit. Adult mortality was recorded after 24 h of constant exposure. Subsequently, observations on percentage parasitism, emergence and mortality of natural enemies on various treatments were recorded. Each treatment was replicated ten times. The evaluation categories for testing the effect of bio-pesticide were based on IOBC protocol as suggested by Hassan (1985).

In the second method, protocol as suggested by Mohan and Sabir (2005) was followed. The observations were similar to IOBC protocol. In the laboratory screening test, scores were assigned based on per cent mortality of *T. chilonis* and *C. z. sillemi*, after 24h of constant exposure (Table 1).

Table 1:	Scoring	chart for	screening	the	bio-safety	of
	insecticio	lal patho	gens			

Mortality of test organism recorded (%)	Category	Score
<50	Harmless	1
50-79	Slightly harmful	2
80-99	Moderately harmful	3
>99	Harmful	4

Data was transformed by arcsine transformation; subjected to ANOVA and drawn conclusions following the Scoring chart.

RESULTS AND DISCUSSION

Systematic studies on the biosafety of *P. luminescens* (symbiotic bacterium associated with *H. bacteriophora* HIP) to the common beneficial insects which are commercialized, viz. *T. chilonis* and *C. z. sillemi* were carried out and the results are presented under different aspects.

Emergence pattern of *T. chilonis* from parasitized eggs of *C. cephalonica* that received the treatments

The emergence pattern of T. chilonis adults from the parasitized eggs of C. cephalonica was recorded at 24 hours interval for 7 days in treated conditions. The percentage emergence of T. chilonis adults on first day ranged between 90.3 and 97.3 in different treatments as recorded by IOBC protocol, while the emergence ranged between 88.8 and 95.8 by the second protocol, with no significant differences among treatments (Table 4). The adult emergence pattern recorded on 2^{nd} , 3rd, 4th, 5th, 6th and 7th days by both the protocols was more or less similar and statistically non-significant, clearly indicating that the treatments, including cell-free culture filtrates, P. luminescens cells and H. bacteriophora, had no discernable adverse effect on emergence of T. chilonis adults. However, Mohan and Sabir (2005) recorded significant reduction in the per cent adult emergence upto 84%.

Adult mortality of *T. chilonis* and its parasitism as influenced by the treaments

A maximum adult mortality of (20.4%) in *T. chilonis* was recorded in nutrient broth (check), followed by

Intraguild predation and biosafety of entomopathogenic nematode,

13.2% in H. bacteriophora, 9.4% in cell-free culture filtrate of P. luminescens treated condition and 6.7% in P. luminescens cells alone, while there was no mortality of adults recorded in untreated and sterile water tested conditions. Although adult mortality in T. chilonis was observed in 4 treated conditions, the respective values correspond to the score of 1 (i.e., <50% morality of the test organism) as per the mortality scoring chart of test organism, which accordingly come under the category of 'harmless'. Parasitism by T. chilonis ranged between 94.3 and 97.5% in treated conditions which was statistically on par with the untreated check (97.5%). Treatment with nutrient broth and cell-free culture filtrate of P. luminescens marginally reduced the parasitism of T. chilonis on the eggs of laboratory host, C. cephalonica, which were statistically not significant in comparison to the parasitism by T. chilonis in untreated and water treated control. These observations clearly indicated that there was no treatment effect on parasitism by *T. chilonis* or on adult mortality, thus showing that the *P. luminescens* associated with *H. bacteriophora* NBAII Hbb1 and its culture filtrate was biologically safe to *T. chilonis* (Table 2).

Egg hatching, larval mortality and survival of adults of *C. z. sillemi* under treated conditions

Biosafety of cells, cell-free culture filtrates of *P. luminescens* and the nematode, *H. bacteriophora*, to the beneficial insect, *C. z. sillemi*, was evaluated in term of their effect on egg hatching, larval mortality and survival of *C. z. sillemi at* 24 hours interval for 3days.

Percentage of hatching (95.2 - 100%) and survivability (80 - 100%) of 4 days old larvae of *C. z. sellimi* recorded after 1-3 days of spraying in different treatments were more or less similar between the two protocols (Table 5). Survivability of adults of *C. z. sellimi* ranged from 96 to

Table 2:	Effect of	various	treatments	on a	adults	of	Trichogramma	chilonis	and its	parasitizing	ability

Treatments	Adult mortality (%)	Category	Parasitism (%)
No treatment	0.0 (1.3) ^b	Harmless	97.5 (81.7)
Filter paper with 100µl SDW	0.0 (1.3) ^b	Harmless	97.2 (81.0)
Heterorhabditis bacteriophora 5000 IJs (50µl)	13.2 (18.5) ^a	Harmless	95.7 (78.4)
Nutrient broth (50µl)	20.4 (25.5) ^a	Harmless	94.3 (76.6)
Photorhabditis luminescens cells alone (50 µl)	6.7 (14.7) ^a	Harmless	97.5 (81.3)
Cell- free culture filtrate of P. luminescens	9.4 (16.3) ^a	Harmless	96.5 (79.5)
Sterile distilled water	0.0 (1.3) ^b	Harmless	97.1 (81.0)
SEM±	3.48	-	1.54
CD at 5%	10.2	-	NS
CD at 1%	13.8	_	NS

Table 3: Effect of various treatments on survival of adults of Chrysoperla zastrowi sillemi

Treatments	Adult survival (%)	Category
No treatment	100.0 (90.0)	Harmless
Filter paper with 100µl sterile water	100.0 (90.0)	Harmless
Freshly emerged Heterorhabditis bacteriophora 5000 IJs (50µl)	96.0 (84.7)	Harmless
Nutrient broth (50µl)	100.0 (90.0)	Harmless
Photorhabditis luminescens cells alone (50 µl)	100.0 (90.0)	Harmless
P. luminescens supernatant cell-free culture filtrate of P. luminescens	96.0 (84.7)	Harmless
Sterile distilled water	100.0 (90.0)	Harmless
SEM±	2.58	_
CD at 5%	NS	_
CD at 1%	NS	_

Treatments	Emergence (%) from treated parasitized eggs after days– IOBC Protocol								Emergence (%) from treated parasitized eggsdays – Mohan and Sabir, (2005) Protocol						
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	
No treatment	92.3 (75.6)	91.9 (74.0)	83.6 (66.7)	87.4 (70.0)	92.1 (74.9) ^a	84.9 (68.9)	75.3 (59.9) ^a	92.3 (76.3)	92.3 (74.0)	83.6 (66.7)	87.4 (70.0)	92.1 (74.9) ^a	84.9 (68.8)	74.6 (59.9)	
Filter paper with 100ml sterile water	93.3 (76.9)	97.0 (83.8)	88.3 (72.8)	82.1 (65.2)	78.8 (63.5) ^b	81.3 (64.5)	74.3 (59.4) ^a	88.8 (77.3)	90.3 (76.4)	91.3 (73.8)	87.0 (69.2)	89.8 (72.2) ^a	75.0 (60.2)	74.4 (60.1)	
Freshly emerged <i>H. bacteriophora</i> 5000 infective juveniles (50µl)	90.3 (72.3)	92.7 (76.1)	83.7 (66.4)	81.1 (65.1)	74.4 (60.0) ^b	78.1 (64.9)	67.3 (54.9) ^a	89.9 (76.3)	93.3 (80.5)	92.4 (77.8)	81.8 (65.1)	80.6 (64.4) ^b	72.5 (58.6)	73.2 (58.9)	
Nutrient broth (50µl)	90.3 (74.2)	91.9 (75.6)	93.2 (76.6)	81.2 (64.7)	84.4 (67.4) ^a	73.2 (59.1)	61.3 (51.6) ^b	92.1 (80.3)	95.3 (82.0)	90.2 (74.0)	75.8 (60.7)	84.0 (67.1) ^a	75.2 (60.4)	73.6 (62.1)	
<i>P. luminescens</i> cells alone (50 µl)	94.3 (76.7)	94.9 (81.8)	87.8 (69.9)	82.7 (68.2)	75.8 (61.0) ^b	81.6 (67.6)	67.3 (54.8) ^a	94.4 (78.3)	96.3 (82.8)	91.6 (73.4)	87.4 (72.3)	81.0 (64.5) ^b	78.3 (63.1)	85.1 (68.4)	
P. luminescens supernatant cell free culture filtrate of P. luminescens	90.3 (73.0)	85.7 (68.5)	91.2 (74.6)	88.3 (72.8)	75.9 (61.0) ^b	76.5 (61.1)	71.3 (57.5) ^a	95.8 (81.3)	87.3 (70.5)	91.5 (75.1)	84.4 (67.3)	76.4 (61.1) ^b	70.7 (57.7)	78.2 (62.4)	
Sterile distilled water	97.3 (80.9)	86.9 (71.5)	86.1 (70.7)	85.8 (68.3)	75.7 (61.0) ^b	74.9 (60.1)	73.3 (58.6) ^a	93.6 (76.3)	87.3 (69.5)	84.9 (67.5)	80.8 (64.9)	77.8 (62.5) ^b	75.3 (60.5)	74.8 (60.0)	
SEM±	3.29	4.28	3.90	4.04	3.05	4.09	1.81	5.09	4.45	3.57	3.34	2.89	3.16	3.83	
CD $(p = 0.05)$	NS	NS	NS	NS	8.9	NS	5.3	NS	NS	NS	NS	8.4	NS	NS	
Category	Harm- less	Harm- less	Harm- less	Harm- less	Harm- less	Harm- less	Harm- less	Harm- less	Harm- less	Harm- less	Harm- less	Harm- less	Harm- less	Harm- less	

Table 4:	Emergence pattern of Trichogramma c	<i>chilonis</i> from	treated parasitized	eggs of	Corcyra cephalonica in
	various treatments				

Figures in parentheses are arcsine transformed values. In the columns letter followed by different letter is significantly different at p = 0.05, NS = Non-significant.

100% at different treatments which was statistically not significant (Table 3). Microscopic examination of the treated eggs, adults and larvae exhibited no morphological or physical changes.

The effect of entomophilic nematodes on the natural enemies of some parasitoids and predators of insect pests was investigated in the laboratory and field in Poland (Jaworska *et al.*, 1995). No effects of *Heterorhabditis bacteriophora* or *Steinernema carpocapsae* on Ichneumonidae or predatory Carabidae were recorded. In another study the effect of entomopathogenic nematodes on non-target arthropods in the laboratory, field soils, and a stream were assessed (Georgis *et al.*, 1991). In the laboratory, adult predators were less susceptible to the nematodes, *S. carpocapsae* and *H. bacteriophora* than the immature stages. In field tests, entomopathogenic nematodes that had significantly suppressed pest populations (Japanese beetle) *Popillia japonica* Newman, *Scapteriscus vicinus* Scudder, tawny mole cricket, (black vine weevil) *Otiorhynchus sulcatus* (F.), (cabbage maggot), *Delia radicum* (L.) and (western corn rootworm) *Diabrotica virgifera* LeConte did not adversely affect the numbers of non-target soil arthropods in comparison with the untreated control.

Experiments of Mrácekand and Spitzer (1983) revealed that *S. kraussei* was not a normal parasite of the predators (*Thereva* spp., *Rhagio* spp.) and parasitoids (Tachinidae: Ichneumonidae) of sawfly *Cephalcia abietis*; no reduction in the impact of the predators and parasitoids on *C. abietis* populations. Even though they recorded some invasion by *S. kraussei* in *Thereva handlirschi* and *Rhagio* spp., none occurred in the parasitoids. It was stated that

Treatments	treatn	tching (nent afte DBC Pro		Larval mortality (%) after treatment after instars – IOBC Protocol			after t days	hatching reatmen – Moha (2005) F	t after n and	Larval mortality (%) after treatment after instars – Mohan and Sabir, (2005) Protocol			
	1	2	3	1 st	2^{nd}	3 rd	1	2	3	1 st	2^{nd}	3 rd	
No treatment	98.0	98.0	100.0	92.0	96.0	98.0	98.0	98.0	100.0	92.0	96.0	98.0	
	(86.3)	(86.3)	(90.0) ^a	(79.4)	(84.7) ^a	(68.9)	(86.3)	(86.3)	(90.0)	(79.4) ^b	(84.7)	(86.3)	
Filter paper with	96.0	98.0	100.0	100.0	96.0	100.0	96.0	96.3	100.0	96.0	100.0	100.0	
100µl sterile water	(84.7)	(86.3)	(90.0) ^a	(90.0)	(84.7) ^a	(64.5)	(82.6)	(83.0)	(90.0)	(84.7) ^b	(90.0)	(90.0)	
Freshly emerged <i>H. bacteriophora</i> 5000 infective juveniles (50µl) Nutrient broth (50µl)	96.6 (83.3)	96.8 (83.4)	95.2 (80.3) ^b	80.0 (66.2)	96.0 (84.7) ^a	88.0 (64.9)	96.5 (83.2)	96.5 (83.1)	95.1 (81.9)	84.0 (68.8) ^b	92.7 (79.9)	92.0 (79.4)	
<i>P. luminescens</i> cells alone (50 μl)	96.2	98.0	94.7	83.0	96.0	100.0	98.0	97.8	98.0	74.0	92.0	92.0	
	(82.8)	(86.3)	(81.5) ^b	(70.9)	(84.7) ^a	(67.6)	(86.3)	(86.1)	(86.3)	(59.6) ^b	(79.4)	(79.4)	
<i>P. luminescens</i> supernatant cell free culture filtrate of <i>P. luminescens</i>	98.0	98.0	100.0	89.0	100.0	98.0	96.0	98.0	98.0	90.0	94.0	94.0	
	(86.3)	(86.3)	(90.0) ^a	(72.8)	(90.0) ^a	(61.1)	(84.7)	(86.3)	(86.3)	(75.7) ^b	(81.0)	(81.0)	
Sterile distilled	96.0	96.5	100.0	92.0	96.0	100.0	98.0	96.0	98.0	92.0	95.0	100.0	
water	(84.7)	(83.2)	(90.0) ^a	(79.4)	(84.7) ^a	(60.1)	(86.3)	(82.6)	(86.3)	(79.4) ^b	(84.0)	(90.0)	
SEM±	4.57	3.23	2.57	5.28	4.77	4.09	3.97	3.96	3.58	5.16	5.60	5.23	
CD $(p = 0.05)$	NS	NS	7.5	NS	8.9	NS	NS	NS	NS	15.1	NS	NS	

Table 5. Effect of various treatments on eggs and larvae of Chrysoperla zastrowi sillemi

Figures in brackets are arcsine transformed values, In the columns letter followed by different letter is significantly different at p = 0.05%, NS = Non-significant.

neither the predators nor the parasitoids of *C. abietis* serve as supporting hosts for the development of *S. kraussei* in focuses of *C. abietis*.

Results of the present studies also revealed similar trend and are in concurrence with the reports of the above researchers.

CONCLUSION

Results indicated that *P. luminescens*, its culture filtrate and *H. bacteriophora* NBAII Hbb1 did not cause any physical changes in eggs, larvae and adults of *T. chilonis* and *C. z. sellimi* and did not exhibit any significant reduction in egg hatching, emergence and parasitism by these natural enemies and was found to be safe without any intraguild effects.

ACKNOWLEDGEMENT

The authors are thankful to the Director, NBAII, Bangalore, for providing the facilities to conduct this experiment and to Dr. H. S. Vidya for her assistance in the extraction and testing.

REFERENCES

- Akhurst RJ. 1980. Morphological and functional dimorphism in *Xenorhabdus* spp., bacteria symbiotically associated with the insect pathogenic nematodes, *Neoaplectana* and *Heterorhabditis*. J Gene Microbiol. 121: 303–309.
- Boemare N, Laumond C Mauléon H. 1996. The entomopathogenic nematode-bacterium complex: Biology, life cycle and vertebrate safety. *Bio Sci Tech.* 6: 333–345.
- Ehlers RU. 1996. Current and future use of nematodes in biocontrol: Practice and commercial aspects with regard to regulatory policy issues *Bio Sci Tech*.6: 303–316.
- Elzen GW, Elzen PJ, King EG. 1998. Laboratory toxicity of insecticide residues to *Orius insidiosus*, *Geocoris punctipes*, *Hippodamia convergens* and *Chrysoperla carnea. Southwest Entomol.* **23**: 335–342.
- Fischer-Le Saux M, Viallard V, Brunel B, Normand P, Boemare N. 1999. Polyphasic classification of the genus *Photorhabdus* and proposal of new taxa.

LALITHA et al

P. luminescens subsp. *luminescens* subsp nov., *P. luminescens* subsp. *akhurstii* subsp. nov., *P. temperata* subsp. *temperata* subsp. nov. and *P. asymbiotica* sp. nov. *Int J Syst Bacteriol.* **49**: 1645–1656.

- Gaugler R, Wilson M, Shearer P. 1997. Field release and environmental fate of a transgenic entomo-pathogenic nematode. *Biol. Control.* **9**: 75–80.
- Georgis R, Kaya HK, Gaugler R. 1991. Effect of steinernematid and heterorhabditid nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) on nontarget arthropods *Environ Entomol.* **20**: 815–822.
- Haag KH, Boucias DG. 1991. Infectivity of insect pathogens against *Neochetina eichhorniae*, a biological control agent of water hyacinth. *Fla Entomol.* **74**: 128–133.
- Hassan SA. 1980. [A reproducible laboratory procedure for testing the persistence of the side-effect of pesticides on egg parasites of the genus *Trichogramma* (Hymenoptera: Trichogrammatidae.] *Zeitschrift for Angewandie Entomologie* **39**: 282–289.
- Hassan SA. 1985. Standard methods to test the side-effects of pesticides on natural enemies of insects and mites developed by the IOBC/WPRS Working group Pesticides and beneficial organisms. *Bulletin OEPP/ EPPO Bull.* **15**: 214–255.
- Jalali SK, Rabindra RJ, Rao NS, Dasan CB. 2003. Mass production of Trichogrammatids and chrysopids. Technical Bulletin No. 33, Project Directorate of Biological Control, H.A. Farm Post, Bellary Road, Hebbal, Bangalore 560 024, Karnataka, India, pp. 16.
- Jansson RK. 1993. Introduction of exotic entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae) for biological control of insects: Potential and problems. *Fla Entomol.* **76**: 82–96.
- Jaworska M, Ropek D, Prusznski S. 1995. The influence of entomopathogenic nematodes on insect natural enemies – Wplyw owadobojczych nicieni na wrogow naturalnych owadow Materialy Sesji Instytutu Ochrony Roslin. **35**: 434–436.
- Kaya HK. 1978. Interaction between *Neoaplectana* carpocapsae (Nematoda: Steinernematidae) and Apanteles militaris (Hymenoptera: Braconidae), parasitoid of the armyworm, *Pseudaletia unipuncta*. J. Inv. Pathol. **31**: 358–364.

- Kaya HK. 1984. Effect of the entomogenous nematode Neoaplectana carpocapsae on the tachinid parasite Compsilura concinnata (Diptera: Tachinidae). J Nematol. 16: 9–13.
- Li, Li-Yung. 1994. World-wide use of *Trichogramma* for biological control on different crops. A survey. In *Biological Control with egg parasitoids* (Eds: Wajnberg, E. and Hassan, SA). CAB International, Oxon, UK. Pp 37–53.
- Mohan S, Sabir N. 2005. Biosafety concern on the use of *Photorhbdus luminescens* as biopesticide: experimental evidence of mortality in egg parasitoid *Trichogramma* spp. *Curr Sci.* 89: 1268–1272.
- Mohan S, Raman R, Gaur HS. 2003. Foliar application of *Photorahabdus luminiscens* symbiotic bacteria from entomopathogenic nematode, *Heterorhabditis indica* to kill cabbage butter fly, *Pieris brassicae*. *Curr. Sci.* 84: 1397.
- Mohan S, Sirohi A, Gaur HS. 2004. Successful management of mango mealybug, Drosicha mangiferae by Photorhabdus luminescens, a symbiotic bacterium from entomopathogenic nematode Heteror-habditis indica. Int J Nematol. 14: 195–198.
- Mrácek Z, Spitzer K. 1983. Interaction of the predators and parasitoids of the sawfly, *Cephalcia abietis* (Pamphilidae: Hymenoptera) with its nematode *Steinernema kraussei J Inv Pathol.* **42**: 397–399.
- Razek-Abdel AS. 2003. Pathogenic effects of Xenorhabdus nematophilus and Photorhabdus luminescens (Enterobacteriaceae) against pupae of the diamondback moth, Plutella xylostella (L.). J Pest Sci. 76: 108–111.
- Richardson PN. 1996. British and European legislation regulating rhabditid nematodes *Bio* Sci Tech. 6: 449–463.
- Rizvi SA, Hennessey R, Knott D. 1996. Legislation on the introduction of exotic nematodes in the US. *Bio. Sci. Techo.* 6: 477–480.
- Rosenheim JA, Kaya HK, Ehler LE, Marois JJ, Jaffee BA. 1995. Intraguild predation among biological-control agents: Theory and Evidence. *Biol. Control.* 5: 303–335.
- Smits PH. 1996. Post-application persistence of entomopathogenic nematodes. *Bio Sci Tech.* 6: 379–387.