Microbial defense systems in foods and feeds


  • Department of Biology, Faculty of Natural Sciences and Life, Mascara University, Mascara 29000




Bacteriocins, foods, feeds, biopreservation, spoilage flora, pathogenic bacteria, antimicrobial potential


Bacteriocins are proteinaceous substances having antigenic and developed by some microbial strains having the ability and effectiveness against pathogenic bacteria and spoilage, harmless to the consumer, and have no adverse effect on the organoleptic product quality. Bacteriocins are rendered inactive by the action of proteolytic enzymes present in the gastrointestinal tract, thy can resist high temperatures, are non-toxic and does not compromise the immune system in experimental animals. Bacteriocins as microbial defense systems has been widely researched and documented. However, though the diversity and abundance of bactrocins is very high, indicating their use as microbial weapons, research on ecological and evolutionary significance needs elaborate studies. More advanced studies are needed to unfold reasons for their success as toxins.


Download data is not yet available.


Metrics Loading ...


Abee T, Krockel L, Hill C. 1995. Bacteriocins: Modes of action and potentials in food preservation and control of food poisoning. Int J Food Microbiol. 28: 169–185.

Abrahan AML, Gomez ALB, Andrew CF. 1996. Aislamento de dermatófitos a partir de ninos sin signos clí­nicos de dermatofitoses. RevMed Tropica.

Alatossva T. 1994. Analogies between superinfection exclusion and bacteriocin immunity. Trends Microbiol. 2: 215–216.

Allgaier H, Jung G, Werner GG, Schneider U, Zahner H. 1986. Epiderminisequencing of a heterotetracyclic 21-peptide amide antibiotic. Eur JBiochem. 160: 9–22.

Allison G, Fremaux CA, Klaenhammer TR. 1994. Expansion of the bacteriocin activity and host range upon complementation of two peptides encoded within the lactacin F operon. J Bacteriol. 176: 2235–2241.

Altena K, Guder A, Cramer C, Bierbaum G. 2000. Biosynthesis of the lantibiotic mersacidin: organization of a type B lantibiotic gene cluster. Appl Environ Microbiol. 66: 2565–2571.

Amato Neto V, Levi GC, Lopes HV. 1994. Antibioticos na Pratica Medica. Sao Paulo, Roca.

Appendini P, Hotchkiss J. 2002. Review of antimicrobial food packaging. Innov Food Sci Emerg Technol. 3: 113–126.

Ariyapitipun T, Mustapha A, Clarke AD. 1999. Microbial shelf life determination of vacuum-packaged fresh beef treated with polylactic acid, lactic acid, and nisin solutions. J Food Prot. 62: 913–920.

Ariyapitipun T, Mustapha A, Clarke AD. 2000. Survival of Listeria monocytogenes Scott A on vacuum-packaged raw beef treated with polylactic acid, lactic acid, and nisin. J Food Prot. 63: 131–136.

Banerjee S, Hansen JN. 1988. Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J Biol Chem. 263: 9508–9514.

Barefoot SF, Klaenhammer TR. 1984. Purification and characterization of the Lactobacillus acidophilus bacteriocin lactacin B. Antimicrob Agents Chemoter. 26: 328–334.

Becker RJ, Cooper AJ, Starzyka MJ. 1993. Evidence for association of bacteriocinogenic activity with membrane vesicles of Thermus rubens. Microbios. 73: 123–133.

Bhunia AK, Johnson MC, Ray B, Belden EL. 1990. Antigenic property of pediocin AcH produced by Pediococcus acidilactici H. J Appl Bacteriol. 69: 211–215.

Blackburn P, Polak J, Gusi S, Rubino S. 1998. Nisin compositions for use as enhanced broad range bactericides. Int Patent Appl WO, pp. 8911–2399.

Boemare NE, Boyer Giglio MH, Thaler JO, Akhust RJ, Behelin M. 1992. Lysogeny and bacteriogeny in Xenorhabdus nematophilus and other Xenorhabdus spp. Appl Environ Microbiol. 58: 3032–3037.

Boulnois GJ, Paton JC, Mitchell TJ, Andrew PW. 1991. Structure and function of pneumolysin, the multifunctional, thiol-activated toxin of Str. pneumoniae. Mol Microbiol. 5: 2611–2616.

Bowdish DM, Davidson J, Lau YE, Lee K, Scott MG, Hancock RE. 2005. Impact of LL37 on anti-infective immunity. J Leuk Biol. 77: 451–459.

Bradley DE. 1966. The structure of pyocin particles released from Pseudomonas aeruginosa by mitomycin C. Int Cong Electr Microscop. 6: 115–116.

Bradely D. 1967. Ultrastructure of bacteriophage abd bacteriocins. Bacteriol Rev. 31: 230–314.

Brashears M, Reilly S, Guilland SE. 1998. Antagonistic action of cells of Lactococcus lactis toward Escherichia coli O157:H7 on refrigerated raw chicken meat. J Food Prot. 61: 166–179.

Braun V, Pilsl H, Grob P. 1994. Colicins: structures, modes of actions, transfer through membranes, and evolution. Arch Microbiol. 161: 199–206.

Brock TD. 1995. Biology of microorganisms. New Jersey, Prentice Hall.

Chatterjee S, Chatterjee DK, Jani RH, Blumbach J, Ganguli BN, Klesel N, Limbert M, SeibertG. 1992a. Mersacidin, a new antibiotic from Bacillus. In vitro and in vivo antibacterial activity. J Antib. 45 (39): 839–845.

Chatterjee S, Chatterjee DK, Lad SJ, Phansalkar MS, Rupp RH, Ganguli BN, Fehlhaber HW, Kogler H. 1992b. Mersacidin, a new antibiotic from Bacillus. fermentation, isolation, purification and chemical characterization. J Antib. 45: 832–838.

Chen H, Hoover DJ. 2003. Bacteriocins and their food applications. Compreh RevFood SciFood Saf. 2(3): 82–100.

Cheung J, Danna K, O'Connor E, Price L, Shand R. 1997. Isolation, sequence, and expression of the gene encoding halocin H4, a bacteriocin from the halophilic archaeon Haloferax mediterranei R4. J Bacteriol. 179: 548–551.

Chikindas ML, Montville TJ. 2002. Perspectives for application of bacteriocins as food preservatives. In: Juneja VK, Sofos JN Eds. Control of food borne microorganisms. New York: Marcel Dekker. Inc, pp. 303–321.

Cintas LM, Casaus P, Holo H, Hernandez PE, Nes IF, Harvastein LS. 1998. Enterocins L50A and L50B, two novels bacteriocins from Enterococcusfeacium L50, are related to staphylococcal hemolysins. J Bacteriol. 180: 1988–1994.

Claypool L, Heinemann B, Voris L, Stumbo CR. 1966. Residence time of nisin in the oral cavity following consumption of chocolate milk containing nisin. J Sci. 49: 314–316.

Cleveland J, Mantiville TJ, Ness IF, Chiknids L. 2001. Bacteriocins: safe antimicrobials for food preservation. Int J Food Microbiol. 71: 1–20.

Davis I. 1999.What are antibiotics? Archaic functions for modern activities. Mol Microbiol. 4: 1227–1232.

Daw MA. 1989. Ph.D thesis. Dublin University. Trinity College Dublin. Ireland.

Daw MA, Falkiner FR. 1993. The ultrastructure of cloacin C5 of Enterobacter cloacae. Proceedings of the Royal Microscopical Society 28: 24.

Daw MA, Fredrick RF. 1996. Bacteriocins: nature, function and structure. Micron. 27: 467–479.

De Clercq E. 2004. Antiviral drugs in current clinical use. J Clin Virol. 30: 115–133.

de Lima ET, Filho RL. 2005. Bacteriocins: nomenclature, detection, mechanism of action and potential use in poultry production. J Food Agr and Environ. 3: 62–66.

de Souza EL, Clemilson A, de Sousa1 CP. 2005. Bacteriocins: Molecules of fundamental impact on the microbial ecology and potential food biopreservatives. Braz Arch Biol Technol. 48: 559–566.

De Vuyst L, Vandamme EJ. 1994. Antimicrobial potential of lactic acid bacteria. In: De Vuyst L, Vandamme EJ, Eds. Bacteriocins of lactic acid bacteria. Blackie Academic and Professional, Glasgow, pp. 91–142.

Diep DB, Havarstein LS, Nes IF. 1996. Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J Bacteriol. 178: 4472–4483.

Diep DB, Havarstein LS, Nissen-Meyer J, Nes IF. 1994. The gene encoding plantaricin A, a bacteriocin from Lactobacillus plantarum C11, is located on the same transcription unit as an agr-like regulatory system. Appl Environ Microbiol. 60: 160–166.

Dykes GA. 1995. Bacteriocins: ecological and evolutionary significance. Trends Ecol Evol. 10: 186–189.

Ehrman MA, Remiger A, Eijsink VG, Vogel RF. 2000. A gene cluster encoding plantaricin 1.25 beta and other bacteriocin like peptides in Lactobacillus plantarum TMW 125. BiochemBiophys Art. 1490: 355–361.

Einarsson H, Lauzon HL. 1995. Biopreservation of brined shrimp (pandalus-borealis) by bacteriocins from lactic-acid bacteria. Appl Environ Microbiol. 61: 669–676.

Engelke G, Gutowski-Eckel Z, Hammelmann M, Entian KD. 1992. Biosynthesis of the lantibiotic nisin: genomic organization and membrane localization of the NisB protein. Appl Environ Microbiol. 58: 3730–3743.

Engelke G, Gutowskieckel Z, Kiesau P, Siegers K, Hammelman M, Entian KD. 1994. Regulation of nisin biosynthesis and immunity in Lactococcus lactis 6F3. Appl Environ Microbiol. 60: 814–825.

Ennahar S, Sashihara T, Sonomoto K, Ishizaki A. 2000. Class IIa bacteriocins: biosynthesis structure and activity. FEMS Microbiol Rev. 24: 85–106.

Ferrer S, Viejo MB, Guasch JF, Enfedaque J, Regue M. 1996. Genetic evidence for an activator required for induction of colicin-like bacteriocin 28b production in Serratia marcescens by DNA-damaging agents. Amer Soc Microbiol. 178: 951–960.

Filatova NA, Anikin VB, Platonov VG, Bulet P. 2002. Antiviral and antitumor peptides from insects. Proc Nat Acad Sci. 99:12628–12632.

Fleming DW, Cochi SL, MacDonald KL, Brondum J, Hayes PS, Plikaytis BD, Holmes MB, Audurier A, Broome CV, Reingold AL. 1985. Pasteurized milk as avehicle of infection in an outbreak of listeriosis. New Engl J Med. 312: 404–407.

Florey HW. 1996. The use of microorganisms for therapeutic structure. Micron. 27: 467–479.

Fredericq P. 1957. Colicins. Ann Revi Microbiol. 11: 7–22.

Fredericq P. 1963. On the nature of colicinogenic factors: a review. J Theoric Biol. 4: 159–161.

Ganz T. 2003. Defensins: antimicrobial peptides of innate immunity. Nat RevImmunol. 3: 710–720.

Ge Y, MacDonald DL, Holroyd KJ, Thornsberry C, Wexler H, Zasloff M. 1999. In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrob Agents Chem. 43: 782–788.

Gratia A. 1925. Comptes Rendus des Seances de la Société de Biology. 93: 1040–1041. In: Mayr-Harting and others. (1972).

Guder A, Wiedemann I, Sahl HG. 2000. Post-translationally modified bacteriocins-the lantibiotics. Biopolymers. 55: 62–73.

Hancock RE, Chapple DS. 1999. Peptides antibiotics antimicrobial. Agents Chem. 43: 1317–1323.

Hancock E, Diamond W. 2000a. Cationic antimicrobial peptides: towards clinical applications. Exp Opin Inves Drugs. 9:1723–1729.

Hancock RE, Diamond G. 2000b. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 8: 402–410.

Hancock RE, Rozek A. 2002. Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett. 206: 143–149.

Hansen JN. 1993. Antibiotics synthesized by post translational modification. Ann Rev Microbiol. 47: 535–564.

Hardy KG. 1975. Colicinogeny and related phenomena. Bacteriol Rev. 39: 464–515.

Hardy KG, Meynell GC. 1972a. Colicin factors and mitomycin. J Gen Microbiol. 73: 547–549.

Hardy KG, Meynell GC. 1972b. Induction of colicin factor E2-P9 by mitomycin. J Bacteriol. 112: 1007–1009.

Håvard J, Pamela H, Robert EWH. 2006. Peptide Antimicrobial Agents. Clin Microbiol Rev. 19: 491–511.

Havarstein LS, Holo H, Nes IF. 1994. The leader peptide of colicin V shares consenus sequence with leader peptides that are common among peptide bacteriocin produced by gram positive bacteria. Microbiol. 140: 2383–2389.

Henning S, Metz R, Hammes WP. 1986. New aspects for the application of nisin to foods based on its mode of action. Int J Food Microbiol. 3: 135–142.

Howards P, Cavard D, Lazdunski C. 1989. Amino acid sequence and length requirements for assembly and function of the colicin A lysis protein. J Bacteriol. 171: 410–418.

Hurst A. 1978.Nisin: its preservative effect and function in the growth cycle of the producer organism. Soc Appl Bacteriol Sympos Series. 7: 297–314.

Hurst A, Hoover DG. 1993. Nisin. In: Davidson PM, Branen AL Eds. Antimicrobials in foods, pp. 369–340.

Issacson RE, konisky J. 1974. Studies on the regulation of the colicin Ib synthesis: replication of the Co1Ib-P9 plasmid during colicin induction. Antimicrob Agents Chem. 6: 848–852.

Ito S, Kageyama M. 1970. Relationship between pyocins and a bacteriophage in pair. J Gen Appl Microbiol. 16: 231–240.

Ito S, Kageyama M, Egami F. 1970. Isolation and characterization of pyocins from several strains of Pseudomonas aeruginosa. J Appl Microbiol. 16: 205–214.

Jack RW, Tagg JR, Ray B. 1995. Bacteriocins of gram positive bacteria. Microbiol. 59: 171–200.

Jacob F, Siminovitch L, Wollman E. 1952. Sur la biosynthese d'une colicine et sur son mode d'action. Ann Inst Pasteur. 83: 295–315.

James SM, Fannin SL, Agee BA, Gall B, Parker E, Vogt J, Run G, Williams J, Lieb L, Prendergast T, Werner SB, Chin J. 1985. Listeriosis outbreak associated with Mexican-style cheese. California. Morb Mort W Rep. 34: 356–357.

James R, Lazdunski C, Pattus F. 1991. Bacteriocins, microcins and lantibiotics. 65: 518–519.

James R, Kleanthous C, Moore GR. 1996. The biology of E-colicins: paradigms and paradoxes. Microbiol. 142: 1569–1580.

Jay JM. 1996. Modern food microbiology. Inc, pp. 635.

Jensen H, Hamill P, Hancock RE. 2006. Peptides antimicrobial agents. Clini Microbiol Rev. 19: 491–51.

Joerger MC, Klaenhammer TR. 1986. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol. 167: 439–446.

Jon Nissen M, IngolfFN. 1997. Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch Microbiol. 167: 67–77.

Jung G. 1991. Lantibiotics: ribosomally synthesized biologically active polypeptides containing sulfide bridges and a, b didehydroamino acids. Angew Chem Int Ed Ingl .30:1051–1068.

Jung G, Sahl HG. 1991. Lantibiotics: a survey. In: Nisin and Novel Lantibiotics. Leiden, Netherlands, pp. 1–34.

Kaletta C, Entian KD, Jung G. 1991. Prepeptide sequence of cinnamycin (Ro 09-0198): the first structural gene of a duramucin – type lantibiotic. Eur J Biochem. 199: 411–415.

Katla T, Mí¸retrí¸ T, Aasen IM, Holck A, Axelsson L, Naterstad K. 2001. Inhibition of L. monocytogenes in cold smoked salmon by addition of sakacin P and/or live Lactobacillus saké cultures. Food Microbiol. 18: 431–9.

Kavanagh K, Dowd S. 2004.Histatins: antimicrobial peptides with therapeutic potential. J Pharm Pharmacol. 6: 285–289.

Khalil R, Elbahloul Y, Djadouni F, Omar S. 2009. Isolation and partial characterization of bacteriocin produced by a newly isolated Bacillus megaterium 19 strain. Pak J Nutr. 8: 242–250.

Kingsbury D. 1966. Bacteriocin production by strains of Neisseria meningitidis. J Bacteriol. 91: 1696–1699.

Klaenhammer TR. 1988. Bacteriocins of lactic acid bacteria. Biochem. 70: 337–349.

Klaenhammer TR. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 12: 39–86.

Klein C, Entian KD. 1994. Genes involved in self-protection against the lantibiotic subtilin produced by Bacillus subtilis ATCC6633. Appl Environ Microbiol. 60: 2793–2801.

Klein C, Kaletta C, Entian KD. 1993. Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl Environ Microbiol. 59: 296–303.

Klein C Kaletta, C, Schnell N, Entian KD. 1992. Analysis of genes involved in biosynthesis of the lantibiotic subtilin Appl Environ Microbiol. 58: 132–142.

Klement Z, Rodolph K, Sands DC. 1990. Methods in phytobacteriology and Bacteriocins. Akademiai Kiado, Budapest, Hungary, pp. 245–249.

Koebink R, Braun V. 1993. Insertion derivatives containing segments of up to 16 amino acids identify surface and periplasm exposed regions of the outer memberane receptor of Escherichia coli K-12. J Bacteriol. 3: 826–839.

Konisky R, Richard SF. 1970. Characterisation of colicin Ia and colicin Ib. J Biol Chem. 245: 2972–2978.

Kozak W, Bardowski J, Dobrzanski WT. 1977. Lacstrepcina bacteriocin produced by Streptococcus lactis Bull Acad Polon Sci [Biol]. 25: 217–221.

Kozar W, Bardowski JE, Dobrzanski WT. 1978. Lactostrepcins-acid bacteriocins produced by lactic Streptococci. J Res. 45: 247–257.

Kruszewska D, Sahl HG, Bierbaum G, Pag U, Hynes SO, Ljungh A. 2004. Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J Antimicrob Chem. 54: 648–653.

Kupke T, Gotz F. 1996. Post-translational modifications of lantibiotics. Antonie van Leeuwenhoek. 69: 139–150.

Lakey JH, Duche D, Gonzalez-Manas JM, Baty D, Pattus F. 1993. Flouresence energy transfer distance measurements the hydrophopic helical hairpin of colicin A in the membrane bound state. J Mol Biol. 230: 1055–1067.

Laukova A, Czikkova S, Laczkova S, Turek, P. 1999. Use of enterocin CCM 4231 to control Listeria monocytogenes in experimentally contaminated dry fermented Hornád salami. Int J Food Microbiol. 52:115–119.

Lebek G, Teysseire P, Baugartner A. 1993. A method of typing Listeria monocytogenes strains by classification of listeriocin and phage receptors. Int J Food Microbiol Virol Parasitol Infec Diseases 278: 58–65.

Leistner L. 2000. Basic aspects of food preservation by hurdle technology. Int J Food Microbiol. 55: 181–186.

Lewus CB. 1991. Characterization of bacteriocins produced by lactic acid bacteria isolated from meat. Appl Environ Microbiol, 153 pp.

Lewus CB, Sun S, Montville TJ. 1992. Production of an amylase sensitive bacteriocin by an atypical Leuconostoc paramesenteroides strain.Appl Environ Microbiol. 58: 143–149.

Marugg JD, Gonzalez CF, Kunka BS, Ledeboer AM, Pucci MJ, Toonen MY, Walker SA, Zoetmulder LC, Enbergh PA. 1992. Cloning, expression, and nucleotide sequence of genes involved in production of pediocin A-1, and bacteriocin from Pediococcus acidilactici PAC1.0. Appl Environ Microbiol. 8: 2360–7.

Mattick ATR, Hirsch A. 1947. Further observations on an inhibitory substance (nisin) from lactic Streptococci. Lancet. 11: 5–7.

Mattick ATR, Hirsch A. 1944. A powerful inhibitory substance produced by group N streptococci. Nature. 154: 550–551.

McAuliffe O, Ross RP, Hill C. 2001. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev. 25: 285–308.

McCormick EM, Savage DC. 1983. Characterization of Lactobacillus sp. strain 100-37 from murine gastrointestinal tract. Ecology, plimid content, and antagonistic activity toward Clostridium raumrim H1. Appl Environ Microbiol. 46: 103–102.

Montville TJ, Kaiser A. 1993. Antimicrobial proteins: classification nomenclature, diversity and relationship to bacteriocins. In: Hoover DG, Steenson LR Eds. Bacteriocins of lactic acid bacteria. Academic Press, pp. 1–22.

Montville TJ, Winkowski K. 1997. Biologically base preservation systems and probiotic bacteria. In: Doyle MP, Beuchat LR, Montville TJ Eds. Food Microbiol, ASM Press, pp. 57–77.

Montville TJ, Winkowski K, Lusdescher RD. 1995. Models and mechanisms for bacteriocin action and application. Int J. 5: 797–814.

Montville TJ, Chung HJ, Chikindas MI, Chen Y. 1999. Nisin A depletes intracellular ATP and acts in a bactericidal manner against Mycobacterium smegmatis. Lett Appl Microbiol. 28: 189–193.

Moreno I, Learyer ALS, Leitao MF. 2000. Detection and characterization of bacteriocins producing of Lactococcus lactis strains. Braz J Microbiol. 31: 184–192.

Morris SL, Walsh RC, Hansen JN. 1984. Identification and characterization of some bacterial membrane sulphydryl groups which are targets of bacteriostatic and antibiotic action. J Biol Chem. 259: 13590–13594.

Murray M, Richard JA. 1997. Comparative study of the antilisterial activity of nisin A and pediocin AcH in fresh ground pork stored aerobically at 5°C. J Food Prot. 60: 1534–1540.

Nes IF, Tagg JR. 1996. Novel lantibiotics and their prepeptides. Antonie van Leeuwenhoek. 69: 89–97.

Nes IF, Diep DB, Havarstein LS, Brurberg MB, Eijsink V, Holo H. 1996. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van Leeuwen hoek. 70:113–128.

Nissen-Meyer J, Nes IF. 1997. Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch Microbiol. 167: 67–77.

Nissen-Meyer J, Holo H, Håvarstein LS, Sletten K, Nes IF. 1992. A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J Bacteriol. 174: 5686–5692.

Nielsen JW, Dickson JS, Crouse JD. 1990. Use of a bacteriocin produced by Pediococcus acidilactici to inhibit Listeria monocytogenes associated with fresh meat. Appl Environ Microbiol. 56: 2142–2145.

Nieto-Lozano JC, Meyer JN, Sletten K, Pleaz C, Nes IF. 1992. Purification and amino acid sequence of a bacteriocin produced by Pediococcus acidilactici. J Gen Microbiol. 138:1985–1990.

Nilsson L, Huss HH, Gram L. 1997. Inhibition of Listeria monocytogenes on cold-smoked salmon by nisin and carbon dioxide atmosphere.Int J Food Microbiol. 38: 217–2797.

Nomura M. 1967. Colicins and related bacteriocins. Ann Rev Microbiol. 12: 257–284.

Oscariz P. 2001. Classification and mode of action of membrane active bacteriocins produced by gram positive bacteria. Int Microbiol. 4: 13–19.

Padgett T, Han I, Dawson P. 1998. Incorporation of food-grade antimicrobial compounds into biodegradable packaging films. J Food Prot. 61: 1330–1335.

Patrzykat A, Friedrich CL, Hang LZ, Mendoza V, Hancock REW. 2002. Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. J Antimicrob Chem. 46: 605–614.

Pelczar M, Reid R, Chan ECS. 1980. Microbiology (4 Eds.). New Delhi. Microbiol. 936 pp.

Price L, Shand R. 2000. Halocin S8: a 36-amino acid microhalocin from the haloarchaeal strain S8a. J Bacteriol. 182: 4951–4958.

Pugsley AP. 1984a. Genetic analysis of ColN plasmid determinants for colicin production, release, and immunity. J Bacteriol. 158: 523–529.

Pugsley AP, Oudega B. 1987. Methods for studying colicins and their plasmids. In: Hardy KG Ed. Plasmids, a practical approach, pp. 105–61.

Qiao M, Ye S, Koponen O, Ra R, Usabiaga M, Immonen T, Saris PE. 1996. Regulation of the nisin operons in Lactococcus lactis N8. J Appl Bacteriol. 80: 626–634.

Rauch PJG, de Vos WM. 1992. Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis.J Bacteriol. 174: 1280–1287.

Ray B. 1996. Fundamental food microbiology. Washington.CRC Press.

Reeves P. 1965. The bacteriocins. Bacteriol Rev. 29: 2445.

Reeves P. 1972. The bacteriocins. In: Kleinzeller A, Springer GF, Wittmann HG Eds. Mol Biol Biochem Biophys. Springer-Verlag, New York. 11: 87–111.

Riley MA. 1998. Molecular mechanisms of bacteriocins evolution. Ann Rev Gen. 32: 255–278.

Riley MA, Gordon DM. 1992. A survey of col plasmids in natural isolates of Escherichia coli and an investigation into the stability of col-plasmid lineages. J Microbiol. 138: 1345–5132.

Riley MA, Gordon DM. 1999. The ecological role of bacteriocins in bacterial competition. Trends Ecol Evol. 7: 129–133.

Riley MA, Wertz JE. 2002. Bacteriocins: evolution, ecology, and application. Ann Rev Microbiol. 56: 117–137.

Rogers LA. 1928. The inhibitory effect of Streptococcus lactis on Lactobacillus bulgaricus. J Bacteriol. 16: 321–325.

Ruiz-Barba JL, Cathcart DP, Warner PJ, Jimenez-Diaz R. 1994. Use of Lactobacillus plantarum LPC010, a bacteriocin producer, as a starter culture in spanish-style green olive fermentations. Appl Environ Microbiol. 60: 2059–2064.

Ryser ET, Marth EH. 1999. Listeria, listeriosis and food safety. New York. Marcel Dekker. Second (Ed.). 738 pp.

Sahl HG. 1994. Staphylococcin 1580 is identical to the lantibiotic epidermin. Implications for the nature of bacteriocins from gram-positive bacteria. Appl Environ Microbiol. 60: 752–755.

Sano Y, Kobayashi M, Kageyama M. 1993. Functional domains of S-type pyocins deduced from chimeric molecules. J Bacteriol. 175: 6179–6185.

Schillinger U, Geisen R, Holzapeel WH. 1996. Potential of antagonistic microorganisms and bacteriocins for the biological preservation of food. Trends in Food Science and Technology 7: 158–164.

Shand R, Price L, O'Connor EM. 1998. Halocins: protein antibiotics from hypersaline environments. In: Oren A Ed. Microbiology and Biogeochemistry of Hypersaline Environments.Boca Raton, FL: CRC. 24: 295–306.

Shtenberg AI. 1973. Toxicity of nisin. Food Cosm.

Shtenberg AJ, Ignatev AD. 1970. Toxicological evaluation of some combinations of food preservatives. Food CosmToxicol. 8: 369–380.

Siezen RJ, Kuipers OP, de Vos WM. 1996. Comparison of lantibiotic gene clusters and encoded proteins. Antonie van Leeuwenhoek 69: 171–184.

Stevens KA, Sheldon BW, Klapes NA, Klaenhammer TR. 1991. Nisin treatment for inactivation of Salmonella species and other gram-negative bacteria. Environ Microbiol. 57: 3612–3615.

Tadashi B, Schnneewind O. 1998. Instruments of microbial warfare: bacteriocin synthesis, toxicity and immunity. Trends Microbiol. 6: 66–71.

Tagg JR. 1992. Bacteriocins of gram-positive bacteria; an opinion regarding their nature, nomenclature, and numbers. In: James R, Lazdunski C, Pattus F Eds. Bacteriocins, microcins and lantibiotics, pp. 33–36.

Tagg JR, Dajani AS, Wannamaker LW. 1976. Bacteriocins of gram-positive bacteria. Bacteriol Rev. 40: 722–756.

Tanaka K. 2001. P-I3 - kinase p85 is a target molecule of proline-rich antimicrobial peptide to suppress proliferation of ras - transformed cells. J Cancer Res. 92: 959–967.

Tavares W. 1984. Manual de antibióticos. Sí£o Paulo, Atheneu.

Taylor JI, Hirsch I, Mattick ATR. 1949. The treatment of bovine streptococcal and staphylococcal mastitis with nisin. Vet Rec. 61: 197–198.

Terebiznik MR, Jagus RJ, Cerrutti P, de Huergo MS, Pilosof AM. 2000. Combined effect of nisin and pulsed electric fields on the inactivation of Escherichia coli. J Food Prot. 63: 741–746.

Terras FR, Schoofs HM, De Bolle MF, Van Leuven F, Rees SB, Vanderleyden J, Cammue BP, Broekaert WF. 1992. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem. 267: 15301–15309.

Torreblanca M, Meseguer I, Ventosa A. 1995. Production of halocin is a practically universal feature of archael halophilic rods. LettAppl Microbiol. 19: 201–5.

Tossi A, Sandri L. 2002. Molecular diversity in geneencoded, cationic antimicrobials polypeptides 8: 743–761.

Trabulsi LR, Alterthum F, Gompertz OF, Candeias JAN. 2002. Microbiologia. Sí£o Paulo, Atheneu.

Trotti A, Garden A, Warde P, Symonds P, Langer C, Redman R, Pajak TF, Fleming TR, Henke M, Bourhis J, Rosenthal DI, Junor E, Cmelak A, Sheehan F, Pulliam J, Devitt-Risse P, Fuchs H, Chambers M, O'Sullivan B, Ang KK. 2004. A multinational, randomized phase III trial of iseganan HCl oral solution for reducing the severity of oral mucositis in patients receiving radiotherapy for head-and-neck malignancy. Int J Rad Oncol BiolPhys 58: 674–681.

Tsai H, Bobek LA. 1998. Human salivary histatins: promising anti-fungal therapeutic agents. Crit Rev Oral Biol Med. 9: 480–497.

Upreti GC, Hinsdill RD. 1975. Production and mode of action of lactocin 27: Bacteriocin from homofermentative Lactobacillus. J Antimicrob Chem. 7: 139–45.

van Belkum MJ, Hayema BJ, Geis A, Kok J, Venema G. 1991. Organization and nucleotide sequences of 2 lactococcal bacteriocin operons. Appl Environ Microbiol. 57: 492–498.

Vaughan EE, Daly C, Fitzgerald GF. 1992. Identification and characterization of helveticin V-1829, a bacteriocin produced by Lactobacillus helveticus 1829. J Appl Bacteriol. 73: 299–308.

Venema K, Abee T, Haandrikman AJ, Leenhouts KJ, Kok J, Konings WN,Venema G. 1993. Mode of action of lactococcin B, a thiolactivated bacteriocin from Lactococcus lactis. Appl Environ Microbiol. 59: 1041–1048.

Vizioli J, Salzet M. 2003. Antimicrobial peptides: new weapons to control parasitic infections. Trends Parasitol. 19 pp.

Wessels S, Jelle B, Nes I. 1998. Bacteriocins of lactic acid bacteria. Toxicol. Denmark.

Whitehead HR. 1933. A substance inhibiting bacterial growth, produced by certain strains of lactic Streptococci. Biochem J. 27: 1793–1800.

Zasloff M. 1987. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Nat Acad Sci. 84: 5449–5453.

Zasloff M. 2002. Antimicrobial peptides of multicellular organisms. Nature. 415: 389–395.

Zhang S, Mustapha A. 1999. Reduction of Listeria monocytogenes and Escherichia coli O157:H7 numbers on vacuum packaged fresh beef treated with nisin or nisin combined with EDTA. J Food Prot. 62: 1123–1127.

Zhang L, Rozek A, Hancock RE. 2001. Interaction of cationic antimicrobial peptides with model membranes. J Biol Chem. 276: 35714–35722.

Zhang L, Parente J, Harris SM, Woods DE, Hancock REW, Falla TJ. 2005. Antimicrobial peptide therapeutics for cystic fibrosis. Antimicrob Agents Chem. 49: 2921–2927.

Zottola EA, Yezzi TL, Ajao DB, Roberts RF. 1994. Utilization of cheddar cheese containing nisin as an antimicrobial agent in other foods. Int J Food Microbiol. 24: 227–238.




How to Cite

Fatima, D. (2017). Microbial defense systems in foods and feeds. Journal of Biological Control, 30(3), 129–148. https://doi.org/10.18311/jbc/2016/15603



Review Articles