Characterisation of native <i>Bacillus thuringiensis</i> isolates toxicity to fall armyworm, <i>Spodoptera frugiperda</i> (J.E. Smith)

Authors

  • Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore – 641003, Tamil Nadu ORCID logo http://orcid.org/0000-0001-8554-3351
  • Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore – 641003,
  • Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore – 641003, Tamil Nadu
  • Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore – 641003, Tamil Nadu
  • Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore – 641003, Tamil Nadu
  • Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore – 641003, Tamil Nadu
  • Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore – 641003, Tamil Nadu
  • Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore – 641003, Tamil Nadu

DOI:

https://doi.org/10.18311/jbc/2021/28812

Keywords:

<i>Bacillus thuringiensis</i>, bioassay, <i>Cry Genes</i>, fall armyworm, PCR, SDS PAGE

Abstract

Toxicity of nine indigenous Bacillus thuringiensis (Bt) isolates collected from Tamil Nadu, India were tested against fall armyworm, Spodoptera frugiperda. At 30 ?g/ml concentration, two Bt isolates viz., T350 and T532 recorded 100 per cent mortality whereas isolates T527 and T532 registered 96 per cent mortality against neonate larvae of S. frugiperda in leaf dip bioassay. SDS PAGE analysis of spore crystal mixture revealed the presence of Cry1 and Cry2 proteins with visible bands at 130 kDa and 65 kDa. PCR screening results showed the presence of cry1 (cry1A, cry1Aa, cry1Ab), cry2 (cry2Aa, cry2Ab) in four isolates and vip3A genes in three isolates but cry9 gene was not present in any of the isolates tested.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ammouneh H, Harba M, Idris, E, Makee H. 2011. Isolation and characterization of native Bacillus thuringiensis isolates from Syrian soil and testing of their insecticidal activities against some insect pests. Turk J Agric For. 35(4): 421-431. DOI: https://doi.org/10.3906/tar-1007-1117

Ben-Dov E, Zaritsky A, Dahan, Barak Z, Sinai R, Manasherob R, Khamraev A, Troitskaya E, Dubitsky A, Berezina N, Margalith Y. 1997. Extend screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Appl. Environ. Microbiol. 63: 4883-4890. https://doi.org/10.1128/aem.63.12.4883-4890.1997 PMid:9406409 PMCid:PMC168816 DOI: https://doi.org/10.1128/aem.63.12.4883-4890.1997

Bernhard K, Jarrett P, Meadows M, Butt J, Ellis JD, Roberts MG, Pauli S, Rodgers P, Burges DH. 1997. Natural isolates of Bacillus thuringiensis: worldwide distribution, characterization, and activity against insect pests. J. Invertebr. Pathol. 70: 59-68. https://doi.org/10.1006/jipa.1997.4669 DOI: https://doi.org/10.1006/jipa.1997.4669

Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72(1-2): 248-254. https://doi.org/10.1016/00032697(76)90527-3 DOI: https://doi.org/10.1016/0003-2697(76)90527-3

Chaufaux J, Marchal M, Gilois N, Jehanno I, Buisson C. 1997. Recherche de souches naturelles du Bacillus thuringiensis dans différents biotopes à travers le monde. Can. J. Microbiol. 43: 337-343. https://doi.org/10.1139/m97-047 DOI: https://doi.org/10.1139/m97-047

Darsi S, Prakash GD, Udayasuriyan V. 2010. Cloning and characterization of truncated cry1Ab gene from a new indigenous isolate of Bacillus thuringiensis. Biotechnol. Lett. 32(9): 1311-1315. https://doi.org/10.1007/s10529010-0301-1 PMid:20480206 DOI: https://doi.org/10.1007/s10529-010-0301-1

Höfte H, Whiteley HR. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev 53(2): 242255. https://doi.org/10.1128/mr.53.2.242-255.1989 PMid:2666844 PMCid:PMC372730 DOI: https://doi.org/10.1128/mr.53.2.242-255.1989

Houngbo S, Zannou A, Aoudji A, Sossou HC, Sinzogan A, Sikirou R, Zossou E, Totin Vodounon HS, Adomou A, Ahanchédé A. 2020. Farmers' Knowledge and Management Practices of Fall armyworm, Spodoptera frugiperda (JE Smith) in Benin, West Africa. Agriculture. 10(10): 430. https://doi.org/10.3390/ agriculture10100430 DOI: https://doi.org/10.3390/agriculture10100430

Jain D, Kachhwaha S, Jain R, Kothari S. 2012. PCR based detection of cry genes in indigenous strains of Bacillus thuringiensis isolated from the soils of Rajasthan. Indian J. Biotechnol.11: 491- 494.

Kalman S, Kiehne KL, Libs JL, Yamamoto T. 1993. Cloning of a novel cryIC-type gene from a strain of Bacillus thuringiensis subsp. galleriae. Appl. Environ. Microbiol. 59(4): 1131-1137. https://doi.org/10.1128/aem.59.4.1131-1137.1993 PMid:8476286 PMCid:PMC202250 DOI: https://doi.org/10.1128/aem.59.4.1131-1137.1993

Kaviyapriya M, Lone R, Balakrishnan N, Rajesh S, Ramalakshmi A. 2019. Cloning and characterization of insecticidal cry/vip genes from an indigenous Bacillus thuringiensis isolate T29 and evaluation of its toxicity to maize fall armyworm Spodoptera frugiperda. J. Entomol. Zool. Stud. 7(3): 1314-1321.

Knowles BH, Dow JA. 1993. The crystal ??endotoxins of Bacillus thuringiensis: Models for their mechanism of action on the insect gut. Bioassays, 15(7): 469-476. https://doi.org/10.1002/bies.950150706 DOI: https://doi.org/10.1002/bies.950150706

Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259): 680-685. https://doi.org/10.1038/227680a0 PMid:5432063 DOI: https://doi.org/10.1038/227680a0

Manikandan R, Ramalakshmi A, Balasubramani V, Udayasuriyan V. 2015. Characterization and cloning of the cry2A gene from indigenous isolates of Bacillus thuringiensis. Mol. Biol. 49(4): 520-526. https://doi.org/10.1134/S0026893315040111 DOI: https://doi.org/10.1134/S0026893315040111

Montezano DG, Sosa-Gómez DR, Specht A, Roque-Specht VF, Sousa-Silva JC, Paula-Moraes SD, Peterson JA, Hunt, TE. 2018. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 26(2): 286-300. https://doi.org/10.4001/003.026.0286 DOI: https://doi.org/10.4001/003.026.0286

Polanczyk RA, da-Silva RFP, Fiuza LM. (2000) Effectiveness of Bacillus thuringiensis strains against Spodoptera frugiperda (Lepidoptera: Noctuidae). Braz. J. Microbiol. 31: 165-167. https://doi.org/10.1590/S151783822000000300003 DOI: https://doi.org/10.1590/S1517-83822000000300003

Prasanna BM, Huesing JE, Eddy R, Peschke VM. 2018. Fall armyworm in Africa: A Guide for Integrated Pest Management, 3rd ed.; CIMMYT: Mexico City, Mexico, 11-106 pp.

Ramalakshmi A, Udayasuriyan V. 2010. Diversity of Bacillus thuringiensis isolated from western ghats of Tamil Nadu State, India. Curr. Microbiol. 61(1): 13-18. https://doi.org/10.1007/s00284-009-9569-6 PMid:20033169 DOI: https://doi.org/10.1007/s00284-009-9569-6

Ramalakshmi A, Manikandan R, Balasubramani V, Udayasuriyan V. 2014. Cloning of a new truncated cry1Ac gene from an Indian isolate of Bacillus thuringiensis. Adv. Appl. Microbiol. 4(1): 55. https://doi. DOI: https://doi.org/10.4236/aim.2014.41009

org/10.4236/aim.2014.41009

Reyaz AL, Gunapriya L. Arulselvi PI. 2017. Molecular characterization of indigenous Bacillus thuringiensis strains isolated from Kashmir valley. Biotechnol. 7(2): 143. https://doi.org/10.1007/s13205-017-0756-z PMid:28597156 PMCid:PMC5465046 DOI: https://doi.org/10.1007/s13205-017-0756-z

Reyaz AL, Balakrishnan N, Udayasuriyan V. 2019. Genome sequencing of Bacillus thuringiensis isolate T414 toxic to pink bollworm (Pectinophora gossypiella Saunders) and its insecticidal genes. Microb. Pathog. 134: 103553. https://doi.org/10.1016/j.micpath.2019.103553 PMid:31129311 DOI: https://doi.org/10.1016/j.micpath.2019.103553

Roh JY, Choi JY, Li MS, Jin BR, Je YH. 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17(4): 547-559.

Romeis J, Meissle M, Bigler F. 2006. Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat. Biotechnol. 24: 63-71. https://doi.org/10.1038/nbt1180 PMid:16404399 DOI: https://doi.org/10.1038/nbt1180

Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean D. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol. Biol. Rev. 62: 775-806. https://doi. DOI: https://doi.org/10.1128/MMBR.62.3.775-806.1998

org/10.1128/MMBR.62.3.775-806.1998 PMid:9729609 PMCid:PMC98934

Schunemann R, Knaak N, Fiuza LM. 2014. Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. ISRN Microbiology. 1-12. https://doi.org/10.1155/2014/135675 PMid:24575310 PMCid:PMC3918364 DOI: https://doi.org/10.1155/2014/135675

Sharanabasappa, Kalleshwaraswamy CM, Asokan R, Swamy HM, Maruthi MS, Pavithra HB, Hegde K, Navi S, Prabhu ST, Goergen GE. 2018. First report of the fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manage. Hortic. Ecsyst. 24(1): 23-29.

Sparks AN. 1979. A review of the biology of the fall armyworm. Florida Entomologist. 82-87. https://doi.org/10.2307/3494083 DOI: https://doi.org/10.2307/3494083

Srikanth J, Geetha N, Singaravelu B, Ramasubramanian T, Mahesh P, Saravanan L, Salin KP, Chitra N, Muthukumar M. 2018. First report on occurrence of fall armyworm Spodoptera frugiperda in sugarcane from Tamil Nadu, India. J. Sugarcane Res.8(2): 195-202.

Swamy HM, Asokan R, Mahmood R, Nagesha S. 2013. Molecular characterization and genetic diversity of

insecticidal crystal protein genes in native Bacillus thuringiensis isolates. Curr. Microbiol. 66(4): 323-330. https://doi.org/10.1007/s00284-012-0273-6 PMid:23207696 DOI: https://doi.org/10.1007/s00284-012-0273-6

Tefera T, Mugo S, Tende R, Likhayo P. 2011. Mass Rearing of Stem Borers, Maize Weevil, and Larger Grain Borer Insect Pests of Maize, CIMMYT: Nairobi, Kenya.

Yu SJ. 1991. Insecticide resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith). Pesti Biochem and Phys 39(1): 84-91. https://doi.org/10.1016/0048-3575(91)90216-9 DOI: https://doi.org/10.1016/0048-3575(91)90216-9

Downloads

Published

2022-06-05

How to Cite

Maheesha, M., Balasubramani, V., Murugan, M., Raveendran, M., Rajadurai, G., Tamilnayagan, T., Kokiladevi, E., & Sathiah, N. (2022). Characterisation of native <i>Bacillus thuringiensis</i> isolates toxicity to fall armyworm, <i>Spodoptera frugiperda</i> (J.E. Smith). Journal of Biological Control, 35(3), 171–180. https://doi.org/10.18311/jbc/2021/28812

Issue

Section

Research Articles

Most read articles by the same author(s)