Harnessing antifungal metabolites from macro basidiomycetes against wilt inciting Fusarium spp.

Jump To References Section

Authors

  • College of Agricultural Sciences – SRM Institute of Science and Technology, Baburayanpettai – 603203, Chengalpattu, Tamil Nadu ,IN
  • Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore – 641003, Tamil Nadu ,IN
  • Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore – 641003, Tamil Nadu ,IN
  • Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore –641003, Tamil Nadu ,IN
  • Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore – 641003, Tamil Nadu ,IN

DOI:

https://doi.org/10.18311/jbc/2022/31880

Keywords:

Antifungal activity, Cell-Free Condensate (CFC), FTIR, macro basidiomycetes, mycelial inhibition

Abstract

Plant diseases especially wilt disease caused by Fusarium spp. pose a major threat to the cultivation of vegetables. In the present study, experiments were undertaken to explore the potential antifungal metabolites produced by macro basidiomycetes viz., Lentinus edodes, Ganoderma lucidum and Schizophyllum commune against Fusarium oxysporum and F. solani causing wilt disease of cucumber and capsicum. Among these, the ethyl acetate fraction of Cell-Free Culture Filtrate (CFC) of L. edodes exhibited maximum per cent inhibition of the mycelial growth of F. oxysporum and F. solani (61.11 and 57.77 %, respectively) at a concentration of 2000 ppm. Characterization of antifungal metabolites of Cell Free Condensate (CFC) of ethyl acetate fraction of L. edodes observed as prominent bands in Thin Layer Chromatography (TLC) indicated with an RF value of 0.25 and 0.69. Further GC-MS characterization of TLC-eluted compounds from L. edodes indicated the presence of 14 different compounds including 2H-pyran-2-one 6-pentyl-, possessing antifungal activity. The Fouriertransform Infrared Spectroscopy (FTIR) spectrum revealed the functional groups such as alcohol (O-H), amides (C-O), aliphatic polyes (CH2), triazenes (N=N), silicon compounds (Si-O-Si), amines (C-N) and phosphorus (P=S). The comparison of metabolite distribution patterns by Principal Component Analysis (PCA) obtained from L. edodes (PC 1) showed a positive correlation between the compounds. This study infers that L. edodes possess antifungal activity against F. oxysporum and F. solani that can be explored for formulation and application of these antifungal compounds in plant protection.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-08-08

How to Cite

S. B. Akshaya, A. S. Krishnamoorthy, S. Nakkeeran, U. Sivakumar, & G. Thiribhuvanamala. (2023). Harnessing antifungal metabolites from macro basidiomycetes against wilt inciting <i>Fusarium</i> spp. Journal of Biological Control, 36(4), 199–214. https://doi.org/10.18311/jbc/2022/31880

Issue

Section

Research Articles
Received 2022-11-07
Accepted 2023-05-06
Published 2023-08-08

 

References

Ahmad, B., Khan, I., Bashir, S. and Azam, S. 2012. Chemical composition and antifungal, phytotoxic, brine shrimp cytotoxicity, insecticidal and antibacterial activities of the essential oils of Acacia modesta. J. Med. Plants Res., 6(31): 4653–4659. https://doi.org/10.5897/JMPR12.016 DOI: https://doi.org/10.5897/JMPR12.016

Akshaya, S. B., Krishnamoorthy, A. S., Sangeetha, C., Nakkeeran, S. and Thiribhuvanamala, G. 2021. Investigation on antifungal metabolites of Chinese caterpillar fungus Ophiocordyceps sinensis (Berk.) against wilt causing pathogen, Fusarium spp. Ann. phytomedicine, 10(1): 195–201. https://doi. org/10.21276/ap.2021.10.1.20 DOI: https://doi.org/10.21276/ap.2021.10.1.20

Arora, S, and Kumar G. 2017. Gas Chromatography-Mass Spectrometry (GC-MS) determination of bioactive constituents from the methanolic and ethyl acetate extract of Cenchrus setigerus Vahl (Poaceae). Antiseptic, 2: 0–31.

Aygun, A., Ozdemir, S., Gulcan, M., Cellat, K. and Şen, F. 2020. Synthesis and characterization of Reishi mushroommediated green synthesis of silver nanoparticles for the biochemical applications. J Pharm. Biomed. Anal, 178: 112970. PMid: 31722822. https://doi.org/10.1016/j. jpba.2019.112970 DOI: https://doi.org/10.1016/j.jpba.2019.112970

Borchers, A. T., Krishnamurthy, A., Keen, C. L., Meyers, F. J. and Gershwin, M. E. 2008. The immunobiology of mushrooms. Exp. Biol. Med., 233(3): 259–276. PMid: 18296732. https://doi.org/10.3181/0708-MR-227 DOI: https://doi.org/10.3181/0708-MR-227

Chinnusamy, S. and Krishnamoorthy, A. S. 2017. Identification of 3’deoxyadenosine (Cordycepin) from the medicinal mushrooms, Ophiocordyceps spp. Int. J. Chem. Studies, 5(3): 788–792.

Choong, Y. K., Sun S. Q., Zhou, Q., Ismail, Z., Rashid, B. A, Tao, J. X. 2011. Determination of storage stability of the crude extracts of Ganoderma lucidum using FTIR and 2D-IR spectroscopy. Vib Spectrosc, 57(1): 87–96. https://doi.org/10.1016/j.vibspec.2011.05.008 DOI: https://doi.org/10.1016/j.vibspec.2011.05.008

Chowdhury, M. M., Kubra, K., Ahmed, S. R. 2015. Screening of antimicrobial, antioxidant properties and bioactive compounds of some edible mushrooms cultivated in Bangladesh. Ann. Clin. Microbiol. Antimicrob, 4(1): 1–6. PMid: 25858107 PMCid: PMC4328533. https:// doi.org/10.1186/s12941-015-0067-3 DOI: https://doi.org/10.1186/s12941-015-0067-3

D’Souza, R. A. and Kamat, N. M. 2017. Potential of FT-IR spectroscopy in chemical characterization of Termitomyces Pellets. J. Appl. Biol. Biotechnol., 5(4): 080–084.

Elisashvili, V. I. 2012. Submerged cultivation of medicinal mushrooms: bioprocesses and products. Int. J. Med. Mushrooms, 14(3). PMid: 22577974. https://doi. org/10.1615/IntJMedMushr.v14.i3.10 DOI: https://doi.org/10.1615/IntJMedMushr.v14.i3.10

Gayathiri, M., Thiribhuvanamala, G., Krishnamoorthy, A. S., Haripriya, S., Akshaya, S. B., and Pravin, A. I. 2021. Characterization of antimicrobial metabolites from medicinal mushrooms against Mango anthracnose pathogen Colletotrichum gloeosporioides (Penz.) Sacc. Ann Phytomed, 1: 185–94. https://doi.org/10.21276/ ap.2021.10.1.19 DOI: https://doi.org/10.21276/ap.2021.10.1.19

Guerrini, A. and Sacchetti, G. 2014. Chemical fingerprinting of medicinal and aromatic plant extracts: HPTLC bioautographic assays as preliminary research tool to match chemical and biological properties. J. Med. Aromat. Plants, 3(3): 2167–0412. https://doi. org/10.4172/2167-0412.1000e152 DOI: https://doi.org/10.4172/2167-0412.1000e152

Guo, Z., Li, Q., Wang, G., Dong, F., Zhou, H. and Zhang, J. 2014. Synthesis, characterization, and antifungal activity of novel inulin derivatives with chlorinated benzene. Carbohydr. Polym, 99: 469–473. PMid: 24274532. https://doi.org/10.1016/j.carbpol.2013.08.044 DOI: https://doi.org/10.1016/j.carbpol.2013.08.044

Han, X. Y., Li, S. B., Liang, G. C., Zhou, G., Zhong, Y. F., Qi, H., Song, Y. L. and Qiao, X. Q. 2017. Synthesis and antifungal activities of N-1,3,4-thiadiazol-2-yl-4-oxothiochroman- 2-yl-formamide derivatives. Yao xue xue bao = Acta Pharm. Sin. , 52(1): 113–119.

Iwalokun, B. A., Usen, U. A., Otunba, A. A. and Olukoya, D. K. 2007. Comparative phytochemical evaluation, antimicrobial and antioxidant properties of Pleurotus ostreatus. Afr. J. Biotechnol., 6(15). https://doi. org/10.5897/AJB2007.000-2254 DOI: https://doi.org/10.5897/AJB2007.000-2254

Jeeva, S. and Krishnamoorthy, A. S. 2018. Antifungal Potential of Myco-molecules of Coprinopsis cinerea (Schaeff) S. Gray s. lat. against Fusarium spp. Madras Agric. J., 105:1. https://doi.org/10.29321/MAJ.2018. DOI: https://doi.org/10.29321/MAJ.2018.000102

Jeleń, H., Błaszczyk, L., Chełkowski, J., Rogowicz, K. and Strakowska, J. 2014. Formation of 6-n-pentyl-2Hpyran- 2-one (6-PAP) and other volatiles by different Trichoderma species. Mycol. Prog, 13: 589–600. https:// doi.org/10.1007/s11557-013-0942-2 DOI: https://doi.org/10.1007/s11557-013-0942-2

Keypour, S., Riahi, H., Moradali, M. F. and Rafati, H. 2008. Investigation of the antibacterial activity of a chloroform extract of Ling Zhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst. (Aphyllophoromycetideae), from Iran. Int J Med Mushrooms, 10(4). https://doi.org/10.1615/ IntJMedMushr.v10.i4.70 DOI: https://doi.org/10.1615/IntJMedMushr.v10.i4.70

Kundu, A., Shakil, N. A., Saxena, D. B., Pankaj, Kumar, J. and Walia, S. 2009. Microwave assisted solventfree synthesis and biological activities of novel imines (Schiff bases). J. Environ. Sci. Health, Part B, 44(5): 428–434. PMid: 20183046. https://doi. org/10.1080/03601230902934645 DOI: https://doi.org/10.1080/03601230902934645

Lim, G. H., Singhal, R., Kachroo, A. and Kachroo, P. 2017. Fatty acid-and lipid-mediated signaling in plant defence. Annu. Rev. Phytopathol., 55: 505–536. PMid: 28777926. https://doi.org/10.1146/annurev-phyto-080516-035406 DOI: https://doi.org/10.1146/annurev-phyto-080516-035406

Liu, J. K. 2007. Secondary metabolites from higher fungi in China and their biological activity. Drug Discov Ther., 1(2): 94–103.

Nakkeeran, S., Surya, T. and Vinodkumar, S. 2020. Antifungal potential of plant growth promoting Bacillus species against blossom blight of rose. J. Plant Growth Regul., 39: 99–111. https://doi.org/10.1007/s00344- 019-09966-1 DOI: https://doi.org/10.1007/s00344-019-09966-1

Nguyen, Q. T., Ueda, K., Tamura, T., Kihara, J., Itoh, K., Yoshikiyo, K., Sakaguchi, Y. and Ueno, M. 2018. Antifungal activity of a novel compound purified from the culture filtrate of Biscogniauxia sp. O821 against the rice blast fungus Magnaporthe oryzae. J. Gen. Plant Pathol., 84: 142–147. https://doi.org/10.1007/s10327- 018-0767-6 DOI: https://doi.org/10.1007/s10327-018-0767-6

Powell, L. A. 2015. Synthesis of novel Riluzole analogues (Doctoral dissertation, University of Huddersfield).

Priya, K., Thiribhuvanamala, G., Kamalakannan, A. and Krishnamoorthy, A. S. 2019. Antimicrobial activity of biomolecules from mushroom fungi against Colletotrichum capsici (Syd.) Butler and Bisby, the Fruit Rot. Pathogen. of Chilli. Int. J. Cur. Microbiol. Appl. Sci., 8(6): 1172–1186. https://doi.org/10.20546/ ijcmas.2019.806.145 DOI: https://doi.org/10.20546/ijcmas.2019.806.145

Rathore, H., Prasad, S., Kapri, M., Tiwari, A. and Sharma, S. 2019. Medicinal importance of mushroom mycelium: Mechanisms and applications. J. Funct. Foods., 56: 182–193. https://doi.org/10.1016/j.jff.2019.03.016 DOI: https://doi.org/10.1016/j.jff.2019.03.016

Ren, L., Hemar, Y., Perera, C. O., Lewis, G., Krissansen, G. W. and Buchanan, P. K. 2014. Antibacterial and antioxidant activities of aqueous extracts of eight edible mushrooms. Bioact. Carbohydr. Diet. Fibre., 3(2): 41–51. https://doi. org/10.1016/j.bcdf.2014.01.003 DOI: https://doi.org/10.1016/j.bcdf.2014.01.003

Sangeetha, B., Krishnamoorthy, A. S., Amirtham, D., Sharmila, D. J. S., Renukadevi, P. and Malathi, V. G. 2019. FT-IR spectroscopic characteristics of Ganoderma lucidum secondary metabolites. J. Appl. Aci. Technol., 38(6): 1–8. https://doi.org/10.9734/cjast/2019/ v38i630453 DOI: https://doi.org/10.9734/cjast/2019/v38i630453

Sangeetha, C., Krishnamoorthy, A. and Amirtham, D. 2015. Antifungal bioactive compounds from Chinese caterpillar fungus (Ophiocordyceps sinensis (Berk.) GH Sung et al.) against plant pathogens. Madras Agric. J., 102(10/12): 353–357. https://doi.org/10.29321/ MAJ.10.001133 DOI: https://doi.org/10.29321/MAJ.10.001133

Sangeetha, C., Krishnamoorthy, A. S., Kumar, N. K. and Pravin, I. A. 2018. Effect of headspace and trapped volatile organic compounds (vocs) of the Chinese caterpillar mushroom, Ophiocordyceps sinensis (ascomycetes), against soil-borne plant pathogens. Int J Med Mushrooms, 20(9). PMid: 30317977. https://doi. org/10.1615/IntJMedMushrooms.2018027311 DOI: https://doi.org/10.1615/IntJMedMushrooms.2018027311

Sivananthan, S., Khusro, A., Paulraj, M. G., Ignacimuthu, S. and Al-Dhabi, N. A. 2017. Biocontrol properties of basidiomycetes: An overview. J Fungi, 3(1): 2. PMid: 29371521 PMCid: PMC5715959. https://doi. org/10.3390/jof3010002 DOI: https://doi.org/10.3390/jof3010002

Sridharan, A. P., Sugitha, T., Karthikeyan, G., Nakkeeran, S. and Sivakumar, U. 2021. Metabolites of Trichoderma longibrachiatum EF5 inhibits soil borne pathogen, Macrophomina phaseolina by triggering amino sugar metabolism. Microb. Pathog., 150: 104714. PMid: 33383148. https://doi.org/10.1016/j. micpath.2020.104714 DOI: https://doi.org/10.1016/j.micpath.2020.104714

Stoppacher, N., Kluger, B., Zeilinger, S., Krska, R. and Schuhmacher, R. 2010. Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J. Microbiol. Methods., 81(2): 187–193. PMid: 20302890. https://doi.org/10.1016/j.mimet.2010.03.011 DOI: https://doi.org/10.1016/j.mimet.2010.03.011

Thangaraj, P., Subbiah, K. A., Uthandi, S. and Amirtham, D. 2021. Antifungal volatiles from macrobasidiomycetes inhibits Fusarium oxysporum f. sp. lycopersici. Madras Agric. J., 108(1-3): 1.

Uma Gowrie, S., Chathurdevi, G. and Rani, K. 2014. Evaluation of Bioactive Potential of Basidiocarp Extracts of Ganoderma lucidum. Int. J. Pharm. Res. Allied Sci. 3: 36–46.

Vamanu, E., Pelinescu, D. and Avram, I. 2018. Antioxidative effects of phenolic compounds of mushroom mycelia in simulated regions of the human colon, in vitro study. Polish J. Food Nutr. Sci., 68(1). https://doi.org/10.1515/ pjfns-2017-0010 DOI: https://doi.org/10.1515/pjfns-2017-0010

Vinodkumar, S., Nakkeeran, S., Renukadevi, P. and Malathi, V. G. 2017. Biocontrol potentials of antimicrobial peptide producing Bacillus species: multifaceted antagonists for the management of stem rot of carnation caused by Sclerotinia sclerotiorum. Front Microbiol., 8: 446. PMid: 28392780 PMCid: PMC5364326. https:// doi.org/10.3389/fmicb.2017.00446 DOI: https://doi.org/10.3389/fmicb.2017.00446

Walley, J. W., Kliebenstein, D. J., Bostock, R. M. and Dehesh, K. 2013. Fatty acids and early detection of pathogens. Curr. Opin. Plant Biol., 16(4): 520–526. PMid: 23845737. https://doi.org/10.1016/j.pbi.2013.06.011 DOI: https://doi.org/10.1016/j.pbi.2013.06.011

Yang, Z., Yu, Z., Lei, L., Xia, Z., Shao, L., Zhang, K. and Li, G. 2012. Nematicidal effect of volatiles produced by sp. J. Asia Pac. Entomol. 15(4): 647–650. https://doi. org/10.1016/j.aspen.2012.08.002 DOI: https://doi.org/10.1016/j.aspen.2012.08.002

Zhou, J., Feng, T. and Ye, R. 2015. Differentiation of eight commercial mushrooms by electronic nose and Gas Chromatography-Mass Spectrometry. J. Sens., 2015. https://doi.org/10.1155/2015/374013 DOI: https://doi.org/10.1155/2015/374013