Biocontrol potential and molecular characterization of lipopeptides producing Bacillus subtilis against Sclerotinia sclerotiorum

Jump To References Section

Authors

  • Department of Agricultural Microbiology, UAS, GKVK, Bengaluru – 560065, Karnataka ,IN
  • Department of Agricultural Microbiology, UAS, GKVK, Bengaluru - 560065 ,IN
  • ICAR-National Bureau of Agricultural Insect Resources, Bengaluru – 560024, Karnataka ,IN
  • ICAR-National Bureau of Agricultural Insect Resources, Bengaluru – 560024, Karnataka ,IN
  • ICAR-National Bureau of Agricultural Insect Resources, Bengaluru – 560024, Karnataka ,IN
  • ICAR-National Bureau of Agricultural Insect Resources, Bengaluru – 560024, Karnataka ,IN
  • Department of Plant Pathology, UAS, GKVK, Bengaluru – 560065, Karnataka ,IN
  • Rice Pathology Laboratory ARS, Gangavathi, UAS Raichur – 584104, Karnataka ,IN
  • ICAR-National Bureau of Agricultural Insect Resources, Bengaluru – 560024, Karnataka ,IN
  • ICAR-National Bureau of Agricultural Insect Resources, Bengaluru – 560024, Karnataka ,IN
  • ICAR-National Bureau of Agricultural Insect Resources, Bengaluru – 560024, Karnataka ,IN
  • Department of Agricultural Microbiology, UAS, GKVK, Bengaluru – 560 065, Karnataka ,IN
  • ICAR-National Bureau of Agricultural Insect Resources, Bengaluru – 560024, Karnataka ,IN
  • ICAR-National Bureau of Agricultural Insect Resources, Bengaluru – 560024, Karnataka ,IN
  • ICAR-National Bureau of Agricultural Insect Resources, Bengaluru – 560024 ,IN

DOI:

https://doi.org/10.18311/jbc/2022/33785

Keywords:

Antimicrobial property, biopesticide, PCR, soft rot of vegetable, Western Ghats

Abstract

Bacillus subtilis is a Gram-positive and endospore producing bacterium. Limited studies have shown that lipopeptides produced by B. subtilis can be inhibitory to phytopathogens. Sclerotinia sclerotiorum is a plant pathogenic fungus which causes various diseases like cotton rot, watery soft rot, stem rot, crown rot and blossom blight in vegetable crops. The objective of the study was to isolate lipopeptides from B. subtilis and study their inhibitory potential against S. sclerotiorum. So, the B. subtilis isolates were extracted from the collected soils of Western Ghats of India. They were initially characterized through morphological parameters followed by PCR amplification of the 16S rDNA gene and confirmation through BLAST algorithm in NCBI database. The lipopeptides produced by these isolates were tested against S. sclerotiorum. B. subtilis strains were effective against S. sclerotiorum and exhibited 18.33 to 29.5 % inhibition under dual culture bio-assay. The antagonistic activity of lipopeptides extracted from B. subtilis strains showed 21.56 to 88.89 % inhibition of S. sclerotiorum in the lowest to highest concentration of lipopeptide tested and was found to be significantly higher than the control. The present study has shown that B. subtilis strains vary in the production of lipopeptides and some of them could produce lipopeptides that are highly inhibitory to S. sclerotiorum. B. subtilis strain NBAIR BSWG1 showed the highest inhibition for S. sclerotiorum. Lipopeptide based poison food technique and the dual culture bioassay results showed that B. subtilis strain NBAIR BSWG1 has immense potential for use in the biological control of S. sclerotiorum. Further studies are being carried out in formulating the lipopeptides for field application.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-08-08

How to Cite

S. Ruqiya, H. C. Girisha, C. Manjunatha, R. Rangeshwaran, A. Kandan, G. Sivakumar, M. K. Prasannakumar, D. Pramesh, K. T. Shivakumara, H. S. Venu, S. Nanditha, K. S. Ankitha, K. Aditya, N. Aarthi, & S. N. Sushil. (2023). Biocontrol potential and molecular characterization of lipopeptides producing <i>Bacillus subtilis</i> against <i>Sclerotinia sclerotiorum</i>. Journal of Biological Control, 36(4), 215–221. https://doi.org/10.18311/jbc/2022/33785

Issue

Section

Research Articles
Received 2023-05-12
Accepted 2023-07-17
Published 2023-08-08

 

References

Abriouel, H., Franz, C. M., Omar, N. B. and Galvez, A. 2011. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev, 35: 201-232. https://doi. org/10.1111/j.1574-6976.2010.00244.x DOI: https://doi.org/10.1111/j.1574-6976.2010.00244.x

Biniarz, P., Lukaszewicz, M. and Janek, T. 2017. Screening concepts, characterization and structural analysis of microbial-derived bioactive lipopeptides a review. Crit Rev Biotechnol, 37(3): 393-410. https://doi.org/10.3109 /07388551.2016.1163324 DOI: https://doi.org/10.3109/07388551.2016.1163324

Gao, H., Xu, X., Dai, Y. and He, H. 2016. Isolation, identification and characterization of Bacillus subtilis CF-3, a bacterium from fermented bean curd for controlling postharvest diseases of peach fruit. Food Sci Technol Res, 22(3): 377-385. https://doi.org/10.3136/ fstr.22.377 DOI: https://doi.org/10.3136/fstr.22.377

Gautham, S. A., Shobha, K. S., Onkarappa, R. and Kekuda, T. R. 2012. Isolation, character isation and antimicrobial potential of Streptomyces species from Western Ghats of Karnataka, India Res J Pharm Technol, 5(2): 233-238.

Hashem, A., Tabassum, B. and Allah, E. F. A. 2019. Bacillus subtilis: a plant growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci, 26: 1291- 1297. https://doi.org/10.1016/j.sjbs.2019.05.004 DOI: https://doi.org/10.1016/j.sjbs.2019.05.004

Jeyaseelan, E. C., Tharmila, S. and Niranjan, K. 2012. Antagonistic activity of Trichoderma spp. and Bacillus spp. against Pythium aphanidermatum isolated from tomato damping off. Arch Appl Sci Res, 4(4): 1623-1627.

Jiang, J., Gao, L., Bie, X., Lu, Z., Liu, H., Zhang, C., Lu, F. and Zhao, H. 2016. Identification of novel surfactin derivatives from NRPS modification of Bacillus subtilis and its antifungal activity against Fusarium moniliforme. BMC Microbiol, 16: 31. https://doi.org/10.1186/s12866- 016-0645-3 DOI: https://doi.org/10.1186/s12866-016-0645-3

Johnson, J. S., Spakowicz, D. J., Hong, B. Y., Petersen, L. M., Demkowicz, P., Chen, L., Leopold, S. R., Hanson, B. M., Agresta, H. O., Gerstein, M. and Sodergren, E. 2019.

Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature Communications, 10(1): 5029. https://doi.org/10.1038/s41467-019-13036-1 DOI: https://doi.org/10.1038/s41467-019-13036-1

Kaur, P. K., Joshi, N., Singh, I. P. and Saini, H. S. 2016. Identification of cyclic lipopeptides produced by Bacillus vallismortis R2 and their antifungal activity against Alternaria alternate. J Appl Microbiol, 122: 139-152. DOI: https://doi.org/10.1111/jam.13303

Kumbar, B., Mahmood, R. and Narasimhappa, N. S. 2017. Identification and molecular diversity analysis of Bacillus subtilis from soils of Western Ghats of Karnataka using 16S rRNA bacterial universal primers. Int J Pure App Biosci, 5(2): 541-548. https://doi. org/10.18782/2320-7051.2721 DOI: https://doi.org/10.18782/2320-7051.2721

Leelasuphakul, W., Hemmanee, P. and Chuenchitt, S. 2008. Growth Inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit. Postharvest Biol Technol, 48(1): 113-121. https://doi.org/10.1016/j. postharvbio.2007.09.024 DOI: https://doi.org/10.1016/j.postharvbio.2007.09.024

Li, X. Y., Mao, Z. C., Wang, Y. H., Wu, Y. X., He, Y. Q. and Long, C. L. 2012. ESI LCMS and MS/MS characterization of antifungal cyclic lipopeptides produced by Bacillus subtilis XF-1. Adv Microbial Physiol, 22(2): 83-93. https://doi.org/10.1159/000338530 DOI: https://doi.org/10.1159/000338530

Ma, Y., Kong, Q., Qin, C., Chen, Y., Chen, Y., Lv, R. and Zhou, G. 2016. Identification of lipopeptides in Bacillus megaterium by two-step ultrafiltration and LC–ESI–MS/ MS. Amb Express 6(1): 1-15. https://doi.org/10.1186/ s13568-016-0252-6 DOI: https://doi.org/10.1186/s13568-016-0252-6

Mardanova, A. M., Hadieva, G. F., Lutfullin, M. T., Khilyas, I. V., Minnullina, L. F., Gilyazeva, A. G., Bogomolnaya, L. M. and Sharipova, M. R. 2016. Bacillus subtilis strains with antifungal activity against the phytopathogenic fungi. Agric Sci, 8(1): 1-20. https://doi.org/10.4236/ as.2017.81001 DOI: https://doi.org/10.4236/as.2017.81001

Miljkovic, M., Jovanovic, S., O’Connor, P. M., Mirkovic, N., Jovcic, B. and Filipic, B. 2019. Brevibacillus laterosporus strains BGSP7, BGSP9 and BGSP11 isolated from silage produce broad spectrum multiantimicrobials. PLoS One 14(5): e0216773. https://doi. org/10.1371/journal.pone.0216773 DOI: https://doi.org/10.1371/journal.pone.0216773

Penha, R. O., Vandenberghe, L. P., Faulds, C., Soccol, V. T. and Soccol, C. R. 2020. Bacillus lipopeptides as powerful pest control agents for a more sustainable and healthy agriculture: Recent studies and innovations. Planta, 251: 1-5. https://doi.org/10.1007/s00425-020-03357-7 DOI: https://doi.org/10.1007/s00425-020-03357-7

Perez, R. H., Zendo, T. and Sonomoto, K. 2018. Circular and leaderless bacteriocins: Biosynthesis, mode of action, applications and prospects. Front Microbiol, 9: 2085. https://doi.org/10.3389/fmicb.2018.02085 DOI: https://doi.org/10.3389/fmicb.2018.02085

Schloss, P. D. and Handelsman, J. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71: 1501. https://doi.org/10.1128/ AEM.71.3.1501-1506.2005 DOI: https://doi.org/10.1128/AEM.71.3.1501-1506.2005

Sharma, D., Singh, S. S., Baindara, P., Sharma, S., Khatri, N., Grover, V., Patil, P. B. and Korpole, S. 2020. Surfactin like broad Spectrum antimicrobial lipopeptide co-produced with sublancin from Bacillus subtilis Strain A52: Dual reservoir of bioactives. Front Microbiol, 11: 1167. https://doi.org/10.3389/fmicb.2020.01167 DOI: https://doi.org/10.3389/fmicb.2020.01167

Sicuia, O. A., Olteanu, V., Ciuca, M., Cîrstea, D. M. and Cornea, C. P. 2011. Characterization of new Bacillus spp. isolates for antifungal properties and biosynthesis of lipopeptides. Sci Papers Ser A Agron, 54: 482-491.

Yu, X., Ai, C., Xin, L. and Zhou, G. 2011. The siderophoreproducing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur J Soil Sci, 47(2): 138-145. https:// doi.org/10.1016/j.ejsobi.2010.11.001 DOI: https://doi.org/10.1016/j.ejsobi.2010.11.001

Zaccardelli, M., Sorrentino, R., Caputo, M., Scotti, R., De Falco, E. and Pane, C. 2020. Stepwise-selected Bacillus amyloliquefaciens and Bacillus subtilis strains from composted aromatic plant waste able to control soilborne diseases. Agri, 10(2): 30. https://doi.org/10.3390/ agriculture10020030 DOI: https://doi.org/10.3390/agriculture10020030

Zhang, L. and Sun, C. 2018. Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plantpathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation. Appl Environ Microbiol, 84(18). https:// doi.org/10.1128/AEM.00445-18 DOI: https://doi.org/10.1128/AEM.00445-18