Identification of secondary metabolites biosynthetic genes, antagonistic activity and potential mechanism of Bacillus subtilis NBAIR-BSWG1 in suppression of Alternaria alternata

Jump To References Section

Authors

  • Department of Agricultural Microbiology, University of Agricultural Sciences, GKVK, Bengaluru – 560065, Karnataka ,IN
  • Department of Agricultural Microbiology, University of Agricultural Sciences, GKVK, Bengaluru – 560065, Karnataka ,IN
  • ICAR-National Bureau of Agricultural Insect Resources, Bengaluru – 560024, Karnataka ,IN
  • ICAR-National Bureau of Agricultural Insect Resources, Bengaluru – 560024, Karnataka ,IN
  • ICAR-National Bureau of Agricultural Insect Resources, Bengaluru – 560024, Karnataka ,IN
  • ICAR-National Bureau of Agricultural Insect Resources, Bengaluru – 560024, Karnataka ,IN
  • ICAR-National Bureau of Agricultural Insect Resources, Bengaluru – 560024, Karnataka ,IN
  • Department of Agricultural Microbiology, University of Agricultural Sciences, GKVK, Bengaluru – 560065, Karnataka ,IN
  • ICAR-National Bureau of Agricultural Insect Resources, Bengaluru – 560024, Karnataka ,IN
  • ICAR-National Bureau of Agricultural Insect Resources, Bengaluru – 560024, Karnataka ,IN
  • ICAR-National Bureau of Agricultural Insect Resources, Bengaluru – 560024, Karnataka ,IN
  • ICAR-National Bureau of Agricultural Insect Resources, Bengaluru – 560024, Karnataka ,IN

DOI:

https://doi.org/10.18311/jbc/2023/35973

Keywords:

Antifungal, biocontrol, gene, lipopeptides, Bacillus subtilis

Abstract

Alternaria alternata wreaks havoc on fruit and vegetable production globally, threatening food security by causing black leaf spot disease. Bacillus subtilis, a natural inhabitant of soil, is a promising biological control agent for the management of A. alternata. In the present study, the antagonistic potential of B. subtilis NBAIR-BSWG1 was initially confirmed against A. alternata through a dual culture technique with 43.03% inhibition of mycelial growth. Subsequently, we extracted the cell-free extract from the NBAIR-BSWG1 pure culture and assessed its impact on A. alternata through the poison food technique and found mycelial growth inhibition of 85.82%. Identification of secondary metabolites biosynthetic genes using specific PCR markers showed the presence of surfactin genes (sfp, srf AA) with an amplicon size of 675 bp and 201 bp, respectively. Amplification of fengycin (fenB) and iturin (ituD) at 670 bp and 423 bp respectively, by using a specific PCR primer confirms the contribution of fengycin and iturin for the antagonistic potential of NBAIR-BSWG1. This study identifies NBAIR-BSWG1 as an effective bacterial biocontrol agent for control of A. alternata, unlocks the genetic basis of antifungal activity NBAIR-BSWG1, depicts molecular mechanisms involved in biological suppression of A. alternata by NBAIR-BSWG1 paving the way for the development of bioformulations for management of A. alternata.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-12-31

How to Cite

RUQIYA, S., GIRISHA, H. C., RANGESHWARAN, R., KANDAN, A., SIVAKUMAR, G., SHIVAKUMAR, K. T., ADITYA, K., ANKITHA, K. S., VENU, H. S., NANDITHA, S., AARTHI, N., & MANJUNATHA, C. (2023). Identification of secondary metabolites biosynthetic genes, antagonistic activity and potential mechanism of <i>Bacillus subtilis</i> NBAIR-BSWG1 in suppression of <i>Alternaria alternata</i>. Journal of Biological Control, 37(4), 226–232. https://doi.org/10.18311/jbc/2023/35973

Issue

Section

Research Articles
Received 2023-12-24
Accepted 2024-01-16
Published 2023-12-31

 

References

Abbo, A. Z., Idris, M. O., and Hammad, A. M. 2014. The antifungal effects of four tomato rhizosphere Bacillus spp. against Alternaria alternata. Int. J. Sci. Res, 3(7): 1324-8.

Aggarwal, R., Kulshreshtha, D., Sharma, S., Singh, V. K., Manjunatha, C., Bhardwaj, S. C., and Saharan, M. S. 2018. Molecular characterization of Indian pathotypes of Puccinia striiformis f. sp. tritici and multigene phylogenetic analysis to establish inter-and intraspecific relationships. Genet Mol Biol, 41: 834-842. https://doi.org/10.1590/1678-4685-gmb-2017-0171 PMid:30281059 PMCid:PMC6415613 DOI: https://doi.org/10.1590/1678-4685-gmb-2017-0171

Aggarwal, R., Sharma, S., Gupta, S., Manjunatha, C., Singh, V. K., and Kulshreshtha, D. 2017. Gene-based analysis of Puccinia species and development of PCR-based marker to detect Puccinia striiformis f. sp. tritici causing yellow rust of wheat. J Gen Plant Pathol, 83: 205-215. https://doi.org/10.1007/s10327-017-0723-x DOI: https://doi.org/10.1007/s10327-017-0723-x

Ahmad, T., Xing, F., Nie, C., Cao, C., Xiao, Y., Yu, X., Moosa, A., and Liu, Y. 2023. Biocontrol potential of lipopeptides produced by the novel Bacillus subtilis strain Y17B against postharvest Alternaria fruit rot of cherry. Front Microbiol, 14: 1150217. https://doi.org/10.3389/fmicb.2023.150217 PMid:37032895 PMCid:PMC10076150 DOI: https://doi.org/10.3389/fmicb.2023.1150217

Ankitha, K. S., Radha, T. K., Ruqiya, S., Aditya, K., Aarthi, N., Nanditha, S., Rangeshwaran, R., Kandan, A., Sivakumar, G., Shylesha, A. N., Girisha, H. C., Nagaraju, K., Venkatesan, T., Sushil, S. N., and Manjunatha, C. 2023. Exploring the impact of cyclic lipopeptides from Bacillus subtilis NBAIR-BSWG1 through in vitro and in planta, studies against Sclerotium rolfsii. J Biol Control, 37(3): 145-149. https://doi.org/10.18311/jbc/2023/35546 DOI: https://doi.org/10.18311/jbc/2023/35546

Chandrasekaran, M., and Chun, S. C. 2016. Expression of PR-protein genes and induction of defense-related enzymes by Bacillus subtilis CBR05 in tomato (Solanum lycopersicum) plants challenged with Erwinia carotovora subsp. carotovora. Biosci. Biotech and Biochem, 80: 2277-2283. https://doi.org/10.1080/09168451.2016.1206811 PMid:27405462 DOI: https://doi.org/10.1080/09168451.2016.1206811

Dube, J. P. 2014. Characterization of Alternaria alternata isolates causing brown spot of potatoes in South Africa, [Master Thesis, Faculty of Natural and Agricultural Sciences, Department of Microbiology and Plant Pathology].

Etchegaray, A., de Castro Bueno, C., de Melo, I. S., Tsai, S. M., Fiore, M. F., Silva-Stenico, M. E., de Moraes, L. A., and Teschke, O. 2008. Effect of a highly concentrated lipopeptide extract of Bacillus subtilis on fungal and bacterial cells. Arch Microbiol, 190(6): 611-22. https://doi.org/10.1007/s00203-008-0409-z. PMid:18654762 DOI: https://doi.org/10.1007/s00203-008-0409-z

Gao, H., Xu, X., Dai, Y., and He, H. 2016. Isolation, identification and characterization of Bacillus subtilis CF-3, a bacterium from fermented bean curd for controlling postharvest diseases of peach fruit. Food Sci Technol Res, 22(3): 377-385. https://doi.org/10.3136/fstr.22.377 DOI: https://doi.org/10.3136/fstr.22.377

Guo, Q., Dong, W., Li, S., Lu, X., Wang, P., Zhang, X., Wang, Y., and Ma, P. 2014. Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol Res. 169(7-8): 533-540. https://doi.org/10.1016/j.micres.3.12.001 PMid:24380713 DOI: https://doi.org/10.1016/j.micres.2013.12.001

Kim, Y. T., Kim, S. E., Lee, W. J., Fumei, Z., Cho, M. S., Moon, J. S., Oh, H. W., Park, H. Y., and Kim, S. U. 2020. Isolation and characterization of a high iturin yielding Bacillus velezensis UV mutant with improved antifungal activity. PLoS One, 15(12): Article 0234177. https://doi.org/10.1371/journal.pone.0234177 PMid:33270634 PMCid:PMC7714226 DOI: https://doi.org/10.1371/journal.pone.0234177

Kukreti, A., Chethana, B., Prasannakumar, M., Manjunatha, C., Reddy, N. K., Puneeth, M., and Gulati, P. 2023. In vitro assessment of bacterial endophytes for antagonistic activity against Magnaporthe oryzae and Cochliobolus miyabeanus in rice. J Biol Control, 37: 2. https://doi.org/10.18311/jbc/2023/34946 DOI: https://doi.org/10.18311/jbc/2023/34946

Kumbar, B., Mahmood, R., and Narasimhappa, N. S. 2017. Identification and molecular diversity analysis of Bacillus subtilis from soils of Western Ghats of Karnataka using 16S rRNA Bacterial Universal Primers. Int J Pure App Biosci, 5(2): 541-548. https://doi.org/10.18782/2320-7051.2721 DOI: https://doi.org/10.18782/2320-7051.2721

Lee, K. J., Kamala-Kannan, S., Sub, H. S., Seong, C. K., and Lee, G. W. 2008. Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World J Microbiol Biotechnol, 24: 139-1145. https://doi.org/10.1007/s11274-007-9585-2 DOI: https://doi.org/10.1007/s11274-007-9585-2

Manjunatha, C., Sharma, S., Kulshreshtha, D., Gupta, S., Singh, K., Bhardwaj, S. C., and Aggarwal, R. 2018. Rapid detection of Puccinia triticina causing leaf rust of wheat by PCR and loop mediated isothermal amplification. PloS One, 13: Article 196409. https://doi.org/10.1371/journal.pone.0196409 PMid:29698484 PMCid:PMC5919678 DOI: https://doi.org/10.1371/journal.pone.0196409

More, T. T., Yadav, J. S. S., Yan, S., Tyagi, R. D., and Surampalli, R. Y. 2014. Extracellular polymeric substances of bacteria and their potential environmental applications. J Environ Manage, 144: 1-25. https://doi.org/10.1016/j.jenvman.2014.05.010. PMid:24907407 DOI: https://doi.org/10.1016/j.jenvman.2014.05.010

Ongena, M., and Jacques, P. 2008. Bacillus lipopeptides: Versatile weapons for Plant Disease biocontrol. Trends Microbiol, 16(3): 115-125. https://doi.org/10.1016/j.tim.2007.12.009 PMid:18289856 DOI: https://doi.org/10.1016/j.tim.2007.12.009

Plaza, G., Chojniak, J., Rudnicka, K., Paraszkiewicz, K., and Bernat, P. 2015. Detection of biosurfactants in Bacillus species: Genes and products identification. J Appl Microbiol. 119(4): 1023-1034. https://doi.org/10.1111/jam.12893 PMid:26171834 DOI: https://doi.org/10.1111/jam.12893

Priyanka, R., Nakkeeran, S., Pravin, I. A., Moorthy, A. K., and Sivakumar, U. 2018. Antifungal activity of Bacillus subtilis subsp. spizizenii (MM19) for the management of Alternaria leaf blight of marigold. J Biol Control, 95-102. https://doi.org/10.18311/jbc/2018/21134 DOI: https://doi.org/10.18311/jbc/2018/21134

Ruqiya, S., Girisha, H., Manjunatha, C., Rangeshwaran, R., Kandan, A., Sivakumar, G., Kumar, M. K. P., Pramesh, D., Shivakumara, K., Venu, H., Nanditha, S., Ankitha, K. S., Aditya, K., Aarthi, N., and Sushil, S. N. 2022. Biocontrol potential and molecular characterization of lipopeptides producing Bacillus subtilis against Sclerotinia sclerotiorum. J Biol Control, 32(4): 251-221.

Srivastava, A. K., Nayak, A. K., Saroj, A., and Misra, P. 2021. Antagonists and Antibiosis: Game changer of Agriculture and Health Sector. Microbes in Microbial Communities: Ecological and Applied Perspectives, p. 215-238. https://doi.org/10.1007/978-981-16-5617-0_10 DOI: https://doi.org/10.1007/978-981-16-5617-0_10

Wu, J. J., Chou, H. P., Huang, J. W., and Deng, W. L. 2021. Genomic and biochemical characterization of antifungal compounds produced by Bacillus subtilis PMB102 against Alternaria brassicicola. Microbiol Res, 25: 126815. https://doi.org/10.1016/j.micres.2021.126815 PMid: 34284299 DOI: https://doi.org/10.1016/j.micres.2021.126815

Most read articles by the same author(s)

1 2 3 4 > >>