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INTRODUCTION

Agriculture accounts for nearly 14.2% of the
gross domestic product (GDP) of India during 2010-11,
according to the Central Statistical Organization (CSO).
Urbanization and growing population had shrunken
the cultivable land and increased the demand for food
which necessitates adoption of modern farming techniques
such as introduction of high yielding- non-native varieties,
monocropping of commercially important crops,
overlapping of cropping seasons and plant protection
techniques. Excessive use of chemical fertilizers resulted
in pest and diseases outbreak. Recent survey shows that
loss of total yield due to pests and diseases accounts to
nearly `15,000 crore annually according to Technology
Information, Forecasting and Assessment Council (TIFAC).
In order to combat the losses due to pest and diseases,
attempts have been made to use agrochemicals and this in
turn had polluted the environment leading to ‘biological
droughts’ posing threat to environment and human
health. ‘Food Safety and Security’ is the need of the
hour and “Sustainable Agriculture” is the only solution.
The U.S. National Research Council (1989) defined
sustainable agriculture as ‘those alternative farming systems
and technologies incorporating natural processes, reducing
the use of inputs of off-farm sources, ensuring the long
term sustainability of current production levels and
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conserving soil, water, energy and farm biodiversity’. Such
sustainable farming can be achieved by the use of organic
fertilizers which are rich in microbes that have plant
growth promoting and plant disease suppressing
potential. Microbial metabolites such as antibiotics, volatile
compounds, enzymes and other toxic substances are the
key factors responsible for biocontrol potential apart from
microbial competition.

Secondary metabolites by bacterial antagonists are
low molecular weight compounds which are less than 2.5
KDa. They are produced during the idiophase when
bacterial growth is limited by the exhaustion of any one
of the essential nutrient source. These metabolites are not
essential for microbial growth and reproductive
metabolism. These compounds are chemically and
functionally diverse with remarkable antimicrobial, plant
growth regulatory, plant enzyme inhibitory, herbicidal,
insecticidal and antiparasitic activities. Due to their
remarkable biological activities they are widely used in
the field of agriculture, medicine, and veterinary sciences
(Barrios-Gonzalez et al., 2005). Wide range of bacterial
antagonists such as Pseudomonas, Bacillus and
Streptomyces that produce an array of antimicrobial
secondary metabolites have been used as biological control
agents in agriculture, as well as in human therapy. Apart
from direct use in biological control of plant diseases,
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they are also used as lead compounds for chemical
synthesis of new analogs or as templates in the rational
drug design (RDD) studies. A total of 3800 bioactive
secondary metabolites, which accounts to nearly 17% of
the total microbial metabolites, are produced by bacteria
(Janos Berdy, 2005).  This review provides an overview
of origin, structure and significance of biologically active
secondary metabolites produced by bacteria belonging to
Pseudomonas, Bacillus and Streptomyces.

SECONDARY METABOLITES BY PSEUDOMONADS

Pseudomonads are Gram-negative, motile, aerobic,
non-enteric, straight or slightly curved rods belonging to
γ – Proteobacteria (Galli et al., 1992). This group of
bacteria inhabits soil, water and phyllosphere, but, is
predominant in plant rhizosphere due to the exudation of
organic acids, sugars and amino acids (Lugtenberg and
Dekkers, 1999). Among pseudomonads, specific group
of fluorescent pseudomonads have been widely used
as bacterial antagonists. Fluorescent pseudomonads
produce secondary metabolites that exhibit wide range
of antimicrobial potential (James and Gutterson, 1986;
Gutterson et al., 1988; Thomashow et al., 1990). This
particular trait makes fluorescent pseudomonads as
promising group of plant growth-promoting rhizobacteria
(PGPR) involved in the biocontrol of plant diseases of
economically important agricultural crops. Secondary
metabolites produced by fluorescent pseudomonads
includes phenazines (Gurusiddaiah et al., 1986;
Thomashow and Weller, 1988; Pierson and Thomashow,
1992; Chin-A-Woeng et al., 1998), phenolics (Keel et al.,
1990, 1992; Vincent et al., 1991), pyrrole-type compounds
(Homma and Suzui, 1989; Pfender et al., 1993),
polyketides (Nowak-Thompson et al., 1994; Kraus and
Loper, 1995) and peptides (Nielsen et al., 1999, 2000;
Sorensen et al., 2001).

Phenazines are intensely colored nitrogen containing
heterocyclic pigments (Leisinger and Margraff, 1979;
Budzikiewicz, 1993; Stevans et al., 1994). A total of
50 different phenazines have been described so far. Some
strains of fluorescent pseudomonads synthesize more
than 10 different phenazine derivatives (Turner and
Messenger, 1986; Mavrodi et al., 1998). Phenazine nucleus
is formed by the symmetric condensation of 2 molecules
of chorismic acid (Chang and Blackwood 1969; Herbert
et al., 1976) wherein, N of the heterocyclic ring is derived
from the nitrogen of glutamine. Phenazines exhibit
broad-spectrum activity against both bacterial and
fungal pathogens (Sunish Kumar et al., 2005: Ayyadurai
et al., 2006, 2007; Ravindra Naik and Sakthivel, 2006;
Ravindra Naik et al., 2008) and involve microbial
competition in the plant rhizosphere (Mazzola et al.,
1992). Phenazine-1-carboxylic acid (PCA) has been

reported from P. fluorescens (Gurusiddaiah et al.,
1986), P. chlororaphis (Pierson and Thomashow, 1992),
P. aeruginosa (Anjaiah et al., 1998) and P. putida (Pathma
et al., 2010). PCA has been reported to inhibit fungal
pathogens such as Gaeumannomyces graminis var. tritici,
Pythium sp., Rhizoctonia solani, Polyporus sp., Sarocladium
oryzae, Macrophomina phaseolina, Pestalotia theae and
various species of Colletotrichum etc. and bacterial
pathogens, Actinomyces viscosus, Bacillus subtilis and
Erwinia amylovora etc. (Gurusiddaiah et al., 1986;
Sakthivel and Gnanamanickam, 1987; Ayyadurai et al.,
2007;  Thomashow et al., 1990; Pathma et al., 2010). In
addition to PCA, P. aeruginosa and P. chlororaphis have
been reported to produce phenazine-1-carboxamide (PCN)
which differs from PCA with a carboxamide (CONH

2
)

group replacing the carboxyl (COOH) group at the first
position of the phenazine core (Chin-A-Woeng et al.,
1998; Mavrodi et al., 2001; Sunish Kumar et al., 2005).
PCN is more stable than PCA and exhibits antifungal
activities even in alkaline pH (Chin-A-Woeng et al., 1998).
The broad-spectrum of antifungal activity of PCN
against Pythium, Fusarium oxysporum f.sp. radiciopersici,
S. oryzae and R. solani have been documented (Chin-A-
Woeng et al., 1998; Sunish Kumar et al., 2005). Pyocyanin
(1-hydroxy-5-methyl-phenazine) is predominantly
produced by P. aeruginosa (Demange et al., 1987). This
bluish coloured compound, is toxic to a wide range of
fungi including Septoria tritici and bacteria (Baron
and Rowe, 1981; Flaishman et al., 1990; Hassan and
Fridovich, 1980).

Phloroglucinols, another important group of metabolites
of fluorescent pseudomonads exhibit antimicrobial activity.
They are known to induce systemic resistance (ISR) in
plants and serve as specific elicitor of phytoalexins and
other similar defense molecules (Dwivedi and Johri, 2003).
Production of 2,4-diacetylphloroglucinol (DAPG) a
phenolic antibiotic, has been reported from P. fluorescens
strains such as Pf-5, CHA0, Q2-87, F113, Q8r1-96.
DAPG-producing strains are effective against black root
rot of tobacco, root rot of tomato, Pythium damping-off of
cucumber and sugar beet, cyst nematode and soft rot of
potato and take-all of wheat (Howell and Stipanovic,
1980; Vincent et al., 1991; Fenton et al., 1992; Harrison
et al., 1993; Pierson and Weller, 1994; Rosales et al.,
1995; Cronin et al., 1997; Raaijmakers and Weller, 1998;
Duffy and Defago, 1999). Apart from antifungal activity,
DAPG is found to exhibit antibacterial and antihelmenthic
activities (Keel et al., 1992; Levy et al., 1992; Harrison
et al., 1993; Nowak-Thompson et al., 1994; Bangera and
Thomashow, 1996).

In addition, DAPG also exhibits herbicidal activity
similar to 2,4-dichlorophenoxyacetic acid a commonly
used post-emergence herbicide for the control of many
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annual, broad-leaved weeds of cereals, sugarcane and
plantation crops. The broad-spectrum antimicrobial
activity of DAPG against phytopathogens has drawn great
attention in agriculture (Keel et al., 1992; Thomashow
and Weller, 1988; Duffy and Defago, 1997; Duffy et al.,
2004).

Pyrrolnitrin (PRN) (3-chloro-4-(2’-nitro-3’-chlorophenyl)
pyrrole), a broad-spectrum antifungal metabolite first
described by Arima et al. (1964) has been reported
from P. aureofaciens (Elander et al., 1968) and
P. fluorescens (Kirner et al., 1998). PRN was found to
be active against a wide range of fungi belonging
deuteromycota, ascomycota and basidiomycota. Hence,
PRN is widely used as fungicide in agriculture. PRN
producing P. fluorescens BL915 has been reported as
bacterial antagonists that suppress R. solani in cotton
(Ligon et al., 2000) and Burkholderia cepacia 5.5B
showed a broad-spectrum antifungal activity towards
phytopathogenic fungi including R. solani (Cartwright
et al., 1995). Variants of PRN viz., isopyrrolnitrin, oxypyr-
rolnitrin from Pseudomonas spp. (Hashimoto and
Hattori, 1966a, b) and monodechloropyrrolnitrin from
P. pyrrolnitrica with lower antifungal activity have been
also reported (Hashimoto and Hattori, 1968).

P. fluorescens Pf-5 produces pyoluteorin (PLT), a
chlorinated antifungal metabolite of mixed polyketide/
amino acid origin (Maurhofer et al., 1992; Maurhofer
et al., 1994; Kraus and Loper, 1995; Nowak-Thompson
et al., 1997). PLT is found to be more effective against
the damping-off disease causing oomycete, P. ultimum
(Maurhofer et al., 1992). The mode of action is by the
selective inhibition of bacterial isoleucyl-tRNA synthetase
(Bennett et al., 1999). Mupirocin, also known as
pseudomonic acid, is a naturally occurring polyketide
antibiotic of fluorescent pseudomonads. Mupirocin
produced by P. fluorescens NCIMB 10586 is highly
active against Staphylococcus aureus and a variety of
Gram-positive organisms (El-sayed et al., 2003). Mupirocin
is also used as a tropical and intranasal antibiotic
(Carcanague, 1997). Another polyketide, 2,3-deepoxy-2,3-
didehydrorhizoxin (DDR) produced by P. chlororaphis
MA342 is effective against several phytopathogenic fungi,
including net blotch of barley caused by the fungus
Drechslera teres (Tombolini et al., 1999). Through the
insertional mutagenesis and subsequent metabolite
profiling in P. fluorescens Pf-5, five analogs of rhizoxin,
a 16-member macrolides with antifungal activity were
identified as products synthesized from a hybrid polyketide
synthase or nonribosomal peptide synthetase gene clusters.
The rhizoxin analogs were reported to show differential
toxicity towards Botrytis cinerea and Phytophthora
ramorum.

Cyclic lipopeptides (CLPs) produced by fluorescent
pseudomonads have been considered as effective bio-
control metabolites. Viscosinamide, a cyclic lipopeptide
produced by P. fluorescens DR54 (Nielsen et al., 1999)
shows prominent antifungal and biosurfactant properties
(Nielsen et al., 2000; Thrane et al., 2000; Nielsen et al.,
2002) and is highly effective against R. solani (Thrane
et al., 2001). Tensin, a cyclic lipodecapeptide, produced
by P. fluorescens 96.578 (Nielsen et al., 2000) effectively
inhibited R. solani in sugar beet (Nielsen et al., 2000).
The activity is proposed to be in synergism with chitinolytic
or cell wall degrading enzymes produced by P. fluorescens
96.578 (Nielsen and Sorensen, 1999; Nielsen et al., 2000).
A close analogue of the cyclic lipopeptides tensin and
polipeptin, the Amphisin synthesised non-ribosomally
by Pseudomonas sp. DSS73 is a lactone, linking Thr4
Oã to the C-terminal (Nielsen et al., 2000; Sorensen
et al., 2001). The primary structure is â-hydroxydecanoyl-
D-Leu-D-Asp-D-allo-Thr-D-Leu-D-Leu-D-Ser-L-Leu-D-
Gln-L-Leu-L-Ile-L-Asp. Amphisin provides better
antifungal activity compared to other fluorescent
pseudomonad peptide antibiotics such as tensin and
viscosinamide (Nielsen et al., 2002). Pseudomonas spp.
also produces another cyclic lipopeptide antibiotic, the
massetolides. Massetolide A biosynthesis in P. fluorescens
strain SS101 involves three genes and it plays an essential
important role in biofilm formation and swarming motility
of P. fluorescens SS101 (de Bruijn et al., 2008).

Hydrogen cyanide (HCN), a volatile antimicrobial
secondary metabolite (Castric, 1981) produced by
Pseudomonas helps in disease suppression (Bagnasco
et al., 1998; Rodriguez and Fraga, 1999; Siddiqui, 2006;
Voisard et al., 1981; Sacherer et al., 1994). HCN and CO

2

are formed from glycine and catalysed by HCN synthase
(Castric, 1994). HCN in P. fluorescens CHA0 played an
indispensible role in suppression of black root rot of
tobacco caused by the fungus Thielaviopsis basicola
(Voisard et al., 1981) and take-all disease of wheat caused
by G. graminis var. tritici.

Siderophores are low molecular weight iron chelating
agents synthesized and secreted by fluorescent pseudo-
monads to solubilize iron (Neilands, 1981; Abd- Alla,
1998). Microbial siderophores sequester the limited iron
supply available in the rhizosphere making it unavailable
to harmful pathogenic fungi and thereby, suppressing
fungal growth (Keel et al., 1992). Siderophores reported
from pseudomonads so far include pyoverdines, pyocheline,
quinolobactin, ornicorrugatin. A number of pyoverdines
comprising of a shared dihydroxy-quinoline chromophore
joined to an acyl (carboxylic acid or amide) group and a
6-12 amino acid type-specific peptide have been
characterized (Budzikiewicz, 1993; Meyer, 2000; Lamont
and Martin, 2003). Pyoverdines and pseudobactins
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produced by a single strain have the same peptide but
differ in the nature of acyl group. Fe3+ binding sites of
pyoverdine are present in the quinoline chromophore and
the peptide chain (Budzikiewicz, 1993). Pyoverdines
effectively suppress Pythium-induced damping-off disease
of tomato (Buysens et al., 1996). P. aeruginosa produce
pyochelines (Cox et al., 1981) and pyocheline frequently
accompany pyoverdines and is responsible for second iron
transport system. Pyochelines similar to pyoverdines
minimizie availability of iron to other microorganisms
deleterious to plants and thereby inhibit their growth.
P. fluorescens ATCC 17400 has shown to produce
quinolobactin siderophore in addition to pyoverdine,
which itself results from the hydrolysis of the unstable
molecule thioquinolobactin. P. fluorescens ATCC 17400
actively suppresses the oomycete, Pythium sp., by competing
for iron, suggesting the involvement of siderophores
(Matthijs et al., 2007). Ornicorrugatin, a new class of
lipopeptidic siderophore, was reported from a pyoverdine-
negative mutant of P. fluorescens AF76. It is structurally
similar to P. corrugata siderophore except for the
replacement of one Dab unit by Orn (Matthijs et al., 2008).
However, it is generally suggested that siderophores of
fluorescent pseudomonads do not play a role in bio-
control in iron rich soils (Campbell et al., 1986). Secondary
metabolites of fluorescent pseudomonads, their source of
origin and biological activity are presented in Table 1.

SECONDARY METABOLITES BY BACILLI

Bacilli are Gram-positive, rod-shaped, aerobic
bacteria, capable of resisting stressful conditions by
forming endospores. Over 200 peptide antibiotics have
been produced by the bacilli (Vining, 1990; Cherif
et al., 2001; Lisboa et al., 2006). Secondary metabolites
by bacilli can be broadly classified as bacteriocins,
lantibiotics and miscellaneous antibiotics based on their
structure. Production of bacteriocins takes place after
10–16 h of bacterial population growth, in the stationary
phase, both in solid and broth media (Khalil et al., 2009).
Bacteriocins produced by different Bacillus spp. with
remarkable bactericidal, fungicidal properties reported
until date are presented in Table 2. Bacteriocins are
reported to be the precursors of antibiotics (Sansinenea
and Ortiz, 2011), as biopreservatives in food and beverages,
and biocontrol agents in agriculture (Bais et al., 2004).
Bacteriocins such as thuricin, thuricin 7, thuricin S,
thuricin CD 19, thuricin 439A and thuricin 439B,
bacthuricin F4, tochicin, kurstakin 18 and entomocin have
been reported. Kurstakin 18 exhibits antifungal activity
against Stachybotrys charatum (Hathout et al., 2000).
Entomocin differs from the other bacteriocins by molecular
mass, biochemical and physical properties, spectrum of
activity, and production kinetics (Cherif et al., 2003).

Lantibiotics are peptide antibiotics with an inter-
residual thioether bonds and are usually secreted in the
mid-growth phase. Based on structural variation lantibiotics
are classified as Type A and Type B lantibiotics exhibiting
a linear and globular structure respectively. Subtilin is
the well-characterized 32-amino-acid pentacyclic lanti-
biotic derived from B. subtilis and its production depends
upon the growth phase and culture density as well, a
quorum sensing mechanism in which subtilin plays a
pheromone type role (Stein et al., 2002).  Bacilysin 1, is
a non-ribosomally synthesized dipeptide composed of
L-alanine and L-anticapsin (an unusual amino acid)
shows biocontrol property against Erwinia amylovora
(Arguelles-Arias et al., 2009). Its antibiotic activity depends
on the anticapsin moiety, which becomes released by
peptidases (Chmara et al., 1982). Sublancin 168 is an
unusual lantibiotic, with two disulphide bridges and an
unusual â- methyllanthionine bridge (Paik et al., 1998),
effective against Gram-positive bacteria. Subtilosin A  is
also another unusual lantibiotic with a macrocyclic
structure containing three inter-residual thioether bonds
between cysteine sulphurs and amino acid alpha-carbons
(Kawulka et al., 2004) effective against a variety of Gram-
positive bacteria, including Listeria (Zheng et al., 1999).
Mersacidin is a type B lantibiotics with a globular structure
showing antibacterial activity by inhibiting peptidoglycan
biosynthesis and in turn affecting cell wall  biosynthesis
by complexing lipid II (Brotz et al., 1997). The lantibiotic
ericin based on structure is classified as ericin S and ericin
A. Ericin S differ from subtilin only by four amino acid
residues, thus similar anti-microbial properties. Ericin A
has a different ring organization and 16 amino acid
substitutions compared with ericin S (Stein, 2005).

Surfactin, a lipoheptapeptide is a powerful bio-
surfactant which exerts a detergent-like action on biological
membranes (Carrillo et al., 2003). It has remarkable
antibacterial, anti-viral, anti-mycoplasma, emulsifying and
foaming activities, but its usage is limited due to its high
production cost (Das et al., 2008). The variations in the
lipid portion and/or the amino acid composition have led
to origin of several isoforms of surfactin 5. viz., bacircine
5a, halo- and isohalobacillin 5b, lichenysin A/G 5c,
daitocidin 5d and pumilacidin 5e.  Pumilacidins 5e A, B,
C, D, E, F and G are cyclic acylheptapeptide composed
of a â -hydroxy fatty acid, two L-leucine, two D-leucine,
L-glutamic acid, L-aspartic acid and L-isoleucine (or
L-valine) (Kalinovskaya et al., 2002; Naruse et al., 1990).
The iturin family comprises of closely related cyclic
lipoheptapeptides that contains one â-amino fatty acid and
seven á-amino acids and includes mycosubtilin 6 (Moyne
et al., 2004), the iturines 7 and bacillomycins 9. Iturin
family peptides are capable of forming ion-conducting
pores and this is the reason for their biological effects
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Table 1.   Secondary metabolites produced by fluorescent pseudomonads and their biological potential

Secondary metabolites Producer strains Biological effects References

Phenazines

Phenazine-1-carboxylic acid P. fluorescens 2-79 Antifungal Gurusiddaiah et al. (1986);

P. aureofaciens 30-84 Antibacterial Thomashow et al. (1990);

P. chlororaphis Antifungal Pierson and Thomashow (1992);

P. putida P15 Antifungal Pathma et al. (2010)

Dimer of phenazine-1- P. fluorescens Pf23 Antimicrobial Sakthivel and Sunish Kumar

Anticancer (2008) carboxylic acid

Phenazine-1-carboxamide P. aeruginosa PUPa3 Antifungal Sunish Kumar et al. (2005)

2-hydroxyphenazine P. chlororaphis PCL1391 Antifungal Chin-A-Woeng et al. (1998);

carboxylic acid P. fluorescens 2-79RN
10

Weller (1983)

Pyocyanin P. aeruginosa    PAO1 Antifungal, Baron et al. (1997)

Antibacterial

Phloroglucinols

2,4-diacetylphloroglucinol P. fluorescens Pf-5, Q2-87, Antifungal, Howell and Stipanovic (1979);

CHAO, PFM2, Q8r1-96, antibacterial, Vincent et al. (1991);

F113 antihelmenthic, Shanahan et al. (1992);

Herbicidal Keel et al. (1992);

Levy et al. (1992);

Flaishman et al. (1990);

Raaijmakers and Weller (2001)

Pyrrols

Pyrrolnitrin P. fluorescens BL914, BL915 Antifungal Kirner et al. (1998);

Ligon et al. (2000)

P. aureofaciens A10338.7 Elander et al. (1968)

P. cepacia 5.5B Cartwright et al. (1995)

Isopyrrolnitrin Pseudomonads sp. Antifungal Hashimoto and Hattori (1966a)

Oxypyrrolnitrin Pseudomonads sp. Antifungal Hashimoto and Hattori (1966b)

Monodechloropyrrolnitrin P. pyrrolnitrica Antifungal Hashimoto and Hattori (1968)

Polyketides

Pyoluteorin P. fluorescens Pf-5, CHA0 Antifungal Howell and Stipanovic (1979);

Keel et al. (1992)

Mupirocin P. fluorescens NCIMB10586 Antibacterial El-Sayed et al. (2003)

2,3-deepoxy-2,3-didehydro P. borealis MA342 Antifungal Tombolini et al. (1999)

rhizoxin

Rhizoxin analogs P. fluorescens Pf-5 Antifungal Loper et al. (2008)

Peptides

Viscosinamide P. fluorescens DR54 Antifungal Nielsen et al. (1998)

Tensin P. fluorescens 96.578 Antifungal Nielsen et al. (2000)

Amphisin Pseudomonas sp. DSS73 Antifungal Sorensen et al. (2001)

Masstolides A P. fluorescens SS101 Biofilm formation, de Bruijn et al. (2008)

swarming motility

Siderophores

Pyoverdine P. fluorescens 3551 Competitive inhibition Loper (2008)

P. fluorescens CHAO of phytopathogens Maurhofer et al. (1994)

P. putida WCS358 Van Wees et al. (1997)

Secondary metabolite production by bacterial antagonists
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Pyochelin P. aeruginosa PAO-1 Competitive inhibition Cox et al. (1981)
P. fluorescens CHAO of  phytopathogens Buysens et al. (1996)
P. aeruginosa 7NSK2

Pseudomonine P. stutzeri KC Competitive inhibition Lewis et al. (2000)
P. fluorescens ATCC 17400 of  phytopathogens Mossialos et al. (2000)
P. fluorescens WCS374 Mercado-Blanco et al. (2001)

Quinolobactin P. fluorescens ATCC 17400 Matthijs et al. (2007)
Ornicorrugatin Pyoverdin-negative mutant Antifungal Matthijs et al. (2008)

of P. fluorescens AF76

Volatiles

Hydrogen cyanide P. fluorescens Pf-5, P5, P7, P8, P21 Antifungal Voisard et al. (1981) ;
P. pseudoalcaligenes P4 Ayyadurai et al. (2007)

Secondary metabolites Producer strains Biological effects References

(Maget-Dana and Peypoux, 1994). They exhibit strong
antifungal and hemolytic activities as well as limited
antibacterial activity (Stein, 2005). Iturin A 7 (Yu et al.,
2002; Pyoung et al., 2010) and bacillomycin L 9 causes
hemolysis and releases potassium from erythrocytes
(Aranda et al., 2005). Iturin A 7 contains the heptapeptide
Asn1-Tyr2-Asn3-Gln4-Pro5-Asn6-Ser7. Mycosubtilin 6,
that was isolated from B. subtilis, has slight variation in
the amino acid residues in heptapeptides Asn1-Tyr2-Asn3-
Gln4-Pro5- Ser6-Asn7. The cyclic lipopeptide Fengycin
8 (synonymous to plipastatin) (Jacques et al., 1999) is a
combination of several exceptional structural properties:
cyclization, branching and unusual constituents and is
specifically active against filamentous fungi (Stein, 2005).
Apart from fungicidal and haemolytic properties, Iturin
A 7 and Fengycin 8 play different roles in the development
and survival of Bacillus strains in their natural habitat
viz., motility, biofilm formation, quorum sensing,
increasing bioavailability of hydrophobic water-insoluble
substrates, heavy metal binding, bacterial pathogenesis,
etc (Sansinenea and  Ortiz, 2011).

Polyketides are the other major family of secondary
metabolites next to peptides. Difficidin 10, bacillaene 11
and macrolactin produced by B. amyloliquefaciens FZB42
and GA1 comes under this group. Difficidin 10 is an
unsaturated 22-membered macrocyclic polyene lactone
phosphate ester with broad spectrum antibacterial activity.
It inhibits protein biosynthesis and acts effectively against
Erwinia amylovara, (Arguelles-Arias et al., 2009).
Bacillaene 11, with the empiric formula C

35
H

48
O

7
, is an

inhibitor of prokaryotic protein synthesis. Macrolactins
12, the polyketide with macrolid-like structure, contain
three separated diene structure elements in a 24-membered
lactone ring. Macrolactin 12, was originally detected in
an unclassified deepsea marine bacterium (Jaruchokta-
weechai et al., 2000). A total of 17 macrolactins have

Table 1.   Secondary metabolites produced by fluorescent pseudomonads and their biological potential (contd. ..)

been described and one among them, 7-O-malonyl
macrolactin A, was found to be effective against Gram-
positive bacterial pathogens (Romero Tabarez et al., 2006).
Bacitracin is a mixture of related cyclic polypeptides
produced by organisms of the licheniformis group of
Bacillus. Bacitracin is synthesised via nonribosomal
peptide synthetases (NRPSs), and it interferes with bacterial
cell wall synthesis and is primarily active against the
Gram-positive bacteria viz., Streptococcus aureus and
Streptococcus spp. but inactive against Gram-negative
organisms and yeasts.

Bacillibactin 15 is a 2, 3-dihydroxybenzoyl-Gly-Thr
trilactone siderophore produced by members of B. cereus
group, B. thuringiensis, B. subtilis and B. licheniformis.
Synthesis bacillibactin 15 depends upon functional Ppant-
transferase (Sfp) (Chen et al., 2009). B. anthracis and
B. cereus  produce petrobactin 16, which was first isolated
from the marine bacterium Marinobacter hydrocarbono-
clasticus and contains two 3,4-catecholate moieties and a
citrate-based backbone. Members of a family of proteins
termed nonribosomal peptide synthetase-independent
siderophore (NIS) synthases are responsible for bio-
synthesis of petrobactin 16 (Koppisch et al., 2008a).
3,4-dihydroxybenzoic acid (3,4-DHB) 17, a petrobactin
precursor is produced by B. thuringiensis, B. anthracis
and B. cereus and its biosynthesis is through early
shikimate intermediates (Koppisch et al., 2008b).

â-exotoxin I 13, termed as thuringiensin 13 from
B. thuringiensis is  a non-proteinaceous, non-specific
toxin. Unlike Vip and Cry toxins it is active against
dipteral, coleoptera, lepidoptera, and few nematode
species. â-exotoxin affects the insect metamorphosis by
inhibiting the synthesis of RNA, by competing with ATP
for binding sites,  and causes teratogenic effects at sublethal
doses (Espinasse et al., 2002, 2004).
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Zwittermicin A 14 produced by B. thuringiensis and
B. cereus is a linear aminopolyol antibiotic (Silo-Suh et
al., 1998) and has an unusual chemical structure which
includes a D-amino acid, ethanolamine, glycolyl moieties,
and terminal amide that is generated from the modification
of the nonproteinogenic amino acid ureidoalanine. It has
a potent antibiotic property. It has ability to suppress
damping-off disease incited by Phytophthora medicaginis
in alfalfa. In addition, zwittermicin A enhances the activity

of the B. thuringiensis endotoxin against insects (Zhou
et al., 2008). Other antibiotics also include an anti-
microbial phospholipid bacilysocin (Tamehiro et al., 2002),
an aminosugar antibiotic 3,3’-neotrehalosadiamine (NTD)
3 structurally 3,3’- diamino-3,30-dideoxy-a,b-trehalose
(Inaoka and Ochi, 2007), and amicoumacin 4 (Pinchuk
et al., 2002). The microbial source of origin of the above
mentioned secondary metabolites and their importance are
presented in Table 2.

Table 2.   Secondary metabolites produced by Bacillus spp. and their biological potential

Secondary metabolites Producer strains Biological effects References

Bacteriocins

Thuricin B. thuringiensis HD2 Bacteriolytic Favret and Yousten (1989)
Tochicin B. thuringiensis HD868 Bactericidal Paik et al. (1997)
Kurstakin 18 B. thuringiensis BMG1.7 Fungicidal Hathout et al. (2000)
Coagulin B. coagulans Bactericidal, bacteriolytic Le Marrec et al. (2000)
Thuricin 7 B. thuringiensis BMG1.7 Bactericidal, bacteriolytic Cherif et al. (2001)
Lichenin B. licheniformis 26-103RA Bactericidal, bacteriolytic Pattnaik et al. (2001)
Polyfermenticin SCD B. polyfermenticus Bactericidal, bacteriolytic Lee et al. (2001)
Thuricin 439A/ B B. thuringiensis B439, Bactericidal, bacteriolytic Ahern et al. (2003)

B. anthracis
Entomocin B. thuringiensis subsp., Bactericidal Cherif et al. (2003)

entomocidus HD9
Bacthuricin F4 B. thuringiensis Fungicidal Kamoun et al. (2005)

subsp. kurstaki BUPM4
Cerein B. cereus Bactericidal, bacteriolytic Torkar and Matijasic (2003);

Bizani et al. (2005a, b)
Megacin B. megaterium Bactericidal, bacteriolytic Lisboa et al. (2006)
Thuricin S B. thuringiensis Bactericidal, bacteriolytic Chehimi et al. (2007)
Thuricin CD 19 B. thuringiensis DPC 6431, Bactericidal, bacteriolytic Rea et al. (2010)

B. anthracis

Lantibiotics

Subtilin B. subtilis ATCC6633 Antibacterial Stein et al. (2002)
Ericin B. subtilis A1/3 Antibacterial Stein (2005)
Mersacidin B. subtilis HIL Y-85, 54728 Antibacterial Stein (2005)
Sublancin B. subtilis 168 Antibacterial Stein (2005)
Subtilosin A B. subtilis 168, ATCC6633 Antibacterial Stein (2005)

Cyclic lipoheptapeptide

Pumilacidin 5e B. pumilus Antiulcer activity Naruse et al. (1990)
Lichenysin 5c B. licheniformis Hemolytic, cytotoxic Grangemard et al. (2001)
Bacircine 5a B. subtilis, B. amyloliquefaciens, Hemolytic, cytotoxic Kalinovskaya et al. (2002)

B. pumilus
Halobacillin 5b B. licheniformis Hemolytic, cytotoxic Kalinovskaya et al. (2002)
Isohalobacillin5b B. licheniformis Hemolytic, cytotoxic Kalinovskaya et al. (2002)
Daitocidin 5d Bacillus sp. Hemolytic, cytotoxic Kalinovskaya et al. (2002)
Surfactin 5 B. subtilis Hemolytic, cytotoxic Carrillo et al. (2003)
Mycosubtilin 6 B. subtilis Hemolytic, fungicidal Moyne et al. (2004)
Iturin 7 B. amyloliquefaciens B94, FZB42 Antifingal, haemolytic Yu et al. (2002);

Aranda et al. (2005)
B. subtilis, Han et al. (2005)
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Fengycin 8 B. subtilis, B. amyloliquefaciens Antifungal Koumoutsi et al. (2004)
Bacillomycin D 9 B. amyloliquefaciens FZB42, Antifingal hemolytic Koumoutsi et al. (2004);

B. subtilis Aranda et al. (2005);
Ramarathnam et al. (2007)

Polyketides macrolactone

Difficidin 10 B. amyloliquefaciens FZB42, GA1 Antibacterial Arguelles-Arias et al. (2009)
Bacillaene 11 B. amyloliquefaciens FZB42, GA1 Antibacterial Chen et al. (2009)
Macrolactin 12 B. amyloliquefaciens FZB42, GA1 Antibacterial Jaruchoktaweechai et al.

(2000)

Phospholipid

Bacilysocin 2 B. subtilis Fungicidal, antibacterial Tamehiro et al. (2002)

Aminosugar

NTD 3 B. subtilis, B. pumilus, Antibacterial Tsuno et al. (1986);
B. circulans Inaoka and Ochi (2007)

Bacillibactin 15 B. subtilis, B. licheniformis, Iron chelation Arguelles-Arias et al. (2009)
B. thuringiensis, B. cereus,
B. anthracis

Petrobactin 16 B. thuringiensis, B. cereus, Iron chelation Zawadzka et al. (2009)
B. anthracis

3,4-DHB 17 B. thuringiensis, B. cereus, Iron chelation Zawadzka et al. (2009)
B. anthracis

Adenine nucleotide analog

â-exotoxin 13 B. thuringiensis Insecticidal Espinasse et al. (2002)

Polyacetilene derivative

Melanin B. thuringiensis Photoprotective Espinasse et al. (2002)

Aminopolyol Antibiotic

Zwittermicin 14 B. thuringiensis, B. cereus Antifungal Silo-Suh et al. (1998)

Dipeptide

Bacilysin 1 B. subtilis 168, B. pumilus Antifungal, antibacterial Chmara et al. (1982);
B. amyloliquefaciens GSB272, Steinborn et al. (2005)

Isocoumarin

Amicoumacin 4 B. subtilis, B. pumilus Antibacterial, Pinchuk et al. (2002)
anti-inflammatory

Secondary metabolites Producer strains Biological effects References

Table 2.   Secondary metabolites produced by Bacillus spp. and their biological potential (contd. ..)

SECONDARY METABOLITES BY STREPTOMYCES

Streptomyces are high G+C, Gram-positive pre-
dominant soil dwelling organisms forming the largest genus
of actinobacteria. They are versatile producers of secondary
metabolites and they include a wide array of compounds
which exhibit potent antimicrobial, anthelmintic, anti-
proliferative, immunosuppressive and insecticidal
compounds which are of immense use in human medicine
as well as agriculture. The first antibiotic, actinomycin
from Streptomyces in 1940, followed by streptomycin in
1943 by Selman Waksman and his co-worker Woodruff
was reported earlier.

Metabolites avermectins, bialaphos, wuyiencin and
coumarrins produced by Streptomyces  have been reported

(Burg et al., 1979; Kondo et al., 1973; Zhong et al., 2004).
Screening of in vivo inhibitory activity of Streptomyces
against nematodes and coccids paved way for the discovery
of avermectins. Avermectins isolated from S. avermitilis
are 16-membered macrocyclic lactone derivatives with
potent anthelmintic and insecticidal properties. Ivermectin,
selamectin, doramectin and abamectin are derivatives of
avermectins antihelmintic property. Avermectins are
effective against arthropod pests but lack antimicrobial
activity. Bialaphos, chemically (L-alanyl-L-alanyl-
phosphinothricin), a tripeptide composed of alanine and
phosphinothricin isolated from S. hygroscopicus and
S. viridochromogenes finds importance in agriculture as
a herbicide (Kondo et al., 1973). Streptomyces sp. TK-

PATHMA, et al.



173

VL_333 which produced metabolites such as 2,3-
dihydroxy-5-(hydroxymethyl) benzaldehyde, 4-(4-hydro-
xyphenoxy) butan-2-one, acetic acid-2-hydroxy-6- (3-oxo-
butyl)-phenyl ester and 8-methyl decanoic acid effectively
inhibited Fusarium wilt (Kavitha et al., 2010). Wuyiencin
produced by S. hygroscopicus var. wuyiensis inhibited
the germination of Botrytis cinerea conidia (Zhong et al.,
2004). Wuyiencin showed broad spectrum activity
against other bacterial and fungal phytopathogens and

effectively controlled gray mold, leaf mold and powdery
mildew etc (Cui et al., 2010). Secondary metabolites
viz., 5,7-dimethoxy-4-p-methoxylphenylcoumarin and 5,7-
dimethoxy-4 phenylcoumarin produced by S. aureofaciens
CMUAc 130 effectively inhibited phytopathogenic fungi
(Taechowisan et al., 2005b). Brief description of different
secondary metabolites from Streptomyces sp., their source
of origin, structural class, and their biological properties
are presented in Table 3.

Table 3.   Metabolites produced by Streptomyces and their biological potential

Secondary metabolites Producer strains Biological effects References

Lipopeptide

Daptomycin  S. roseosporus. Antibiotic, effective Woodworth et al. (1992)
against Gram-positive bacteria

Tripeptide

Bialaphos S. hygroscopicus, Herbicidal Kondo et al. (1973)
S. viridochromogenes

Depsipeptides

Salinamide  A and B Streptomyces sp. Antibiotic,
anti-inflammatory Trischman et al. (1994

Cyclic Peptides
Cyclomarins S. arenicola Anti- inflammatory Renner et al. (1999)

Glycopeptide

Bleomycin S. verticillus
S. mobaraensis ATCC 15003 Antibiotic Radwan et al. (2011)

Aminoglycoside

Streptomycin S. griseus Prokaryotic protein Singh and Mitchison (1954)
synthesis inhibitor; bactericidal

Neomycin S. fradiae Antibacterial Waksman and Lechevalier
(1949)

Istamycins A and B S. tenjimariensis Antibiotic Okami et al. (1979)

Macrocyclic lactones

Avermectin S. avermitilis, Anthelmintic, Burg et al. (1979)
insecticidal properties

Tacrolimus S. tsukubaensis Immunosuppressor Sirolimus (rapamycin)
S. hygroscopicus Immunosuppressor Vezina et al. (1975)

antiproliferative,
antifungal

Ionophore

Aplasmomycin S. griseus Antibiotic Okami et al. (1976)

Carbapenem
Thienamycin S. cattleya I Inhibits peptidoglycan Kahan et al. (1979)

biosynthesis

Quinones

Marinone Streptomyces sp. Antibiotic Pathirana et al. (1992)
Komodoquinone A Streptomyces sp. KS3 Neutritogenic Itoh et al. (2003)

Others

Rifamycin S. arenicola Antibiotic Kim et al. (2006)
Clavulanic acid S. clavuligerus β-lactamase inhibitor Brown (1986)
Platensimycin S. platensis Antibacterial Wang et al. (2006)
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CONCLUSION

Secondary metabolites from bacterial antagonists
have served as important sources of antimicrobial agents
which are of great use in the field of medicine and
agriculture. New scientific approaches such as use of
metagenomics would serve to explore the potential of
numerous silent, unculturable microbial consortia that
might produce novel metabolites which in turn could
possibly serve in the field of agriculture as bio-pesticides,
bio-fungicides and bio-weedicides. Bioantagonists and
their metabolites enable us to do better organic farming
and reap higher yields without polluting or depleting the
environment.
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