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Abstract
Several lines of evidence support the notion that Bone Morphogenetic Proteins (BMPs) and gonadotropic hormones are 
major regulators of ovarian follicle development by inducing gonadotropin-mediated steroid hormone production and 
regulating ovarian follicle cell proliferation. Research from our laboratory and elsewhere have demonstrated that BMPs 
play important roles during the early stages of folliculogenesis. Despite the extensive research to reveal the mechanism of 
interaction between BMPs and gonadotropic hormones in the process of folliculogenesis, the exact mechanism of such an 
interaction is not adequately understood. Previously, we developed a unique mouse model characterized by a short-term 
attenuation of the BMP signaling system using passive immunization against bone morphogenetic protein 4 (BMP-4) and 
bone morphogenetic protein receptor 1B (BMPR1B). This model unequivocally demonstrated that the attenuation of BMP 
action was an effective method of enhancing fertility reserve and promoting follicle and ovulation rates in female mice. 
In addition, this study pointed to the possibility of bi-directional mutual regulation between BMPs, Follicle-Stimulating 
Hormone (FSH), and Luteinizing Hormone (LH). To gain further insight into this mechanism we used this mouse model 
to examine the protein expression and mRNA level of BMPR1B, Follicle-Stimulating Hormone Receptor (FSHR) and 
Luteinizing Hormone/Choriogonadotropin Receptor (LHCGR) in multiple stages of follicle development in female mice. 
Immunofluorescent analysis of female mice treated with anti-BMPR1B antibodies showed a significant upregulation 
of BMPR1B, FSHR, and LHCGR in the ovarian granulosa cells during the main stages of follicle development, whereas 
treatment with anti-BMP4 antibodies showed no effect. In addition, attenuation of BMPR1B resulted in upregulation of the 
FSHR (exclusively expressed in the granulosa cell) and LHCGR mRNA levels in the ovary. The present study implies that 
BMPs engage indirectly in regulating the later stages of folliculogenesis, in addition to their direct role in the regulation 
of the early stages of follicle development, by enhancing granulosa cell sensitivity to gonadotropins through upregulating 
the receptor expression. We propose that our mouse model is siutable to elucidate the mechanism of interaction between 
BMPs and gonadotropins in folliculogenesis.
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1. Introduction
Folliculogenesis is the main process associated with 
female fertility leading to the development of mature 
oocytes. The folliculogenesis process comprises a series 
of chronological and well-regulated steps beginning in 
follicle cells formed during the early stages of embryonic 
development and ending in ovulation and corpus luteum 
formation1. During fetal development, the Primordial 
Germ Cells (PGCs) are formed and migrate to the 
gonads to form a germ cells nest, which represents the 
fertility reserve for the entire female reproductive life2,3. 
The primordial follicle, the basic functional unit of the 
ovary, comprises an oocyte, arrested in the first prophase 
of meiosis, enclosed by an incomplete flattened pre-
granulosa cell2. A limited number of primordial follicles 
reach the stage of ovulation, while a vast majority of the 
follicles die of atresia4. As such, the number and quality 
of these follicles influence fertility and reproduction in 
females. Previous studies using various experimental 
models demonstrated that gonadotropins, namely 
FSH and LH, interact with other intraovarian factors, 
including bone morphogenetic proteins (BMPs) signaling 
to regulate the normal ovarian functions5–8.

In more detail, this kind of interaction is either 
stimulatory, such as the role of BMP-6 in increasing the 
expression of FSHR in human granulosa cells in vitro9, or 
inhibitory, such as the role of BMP-2, BMP-4, and BMP-
15 on FSHR modulation of granulosa cells in hens10, 
ewes11, and rats12. Several reports from our laboratory 
and others have demonstrated that the BMPs signaling 
system is involved in most events of folliculogenesis 
such as primordial follicle formation13–16, primordial 
follicles recruitment17,18, gonadotropin-mediated 
steroidogenesis8,19,20, cyclic recruitment of mature 
follicles1,21, ovulation7,22, and follicular atresia19,23,24. 
Unfortunately, these studies have been conducted 
separately in many different experimental setups such 
as using different animal species, in vivo and in vitro, 
in one or more specific stages of folliculogenesis, and 
using different methodological approaches. Such diverse 
approaches make it difficult to arrive at a comprehensive 
understanding of the outcomes. Therefore, a 
comprehensive study demonstrating the mechanism(s) 
of such reciprocal regulatory interactions between BMPs 
signaling and gonadotropin actions in the regulation of 
follicle development in vivo is required. 

We believe that there are two main reasons for this 
lack of understanding: 1) Most of the reported studies 

were conducted in vitro, partly because of the complex 
nature and physiology of ovarian folliculogenesis. 2) To 
overcome this difficulty and facilitate in vivo studies, 
several purpose-made transgenic knockout animal models 
became useful. However, the majority of these animal 
models with the potential to decipher the mechanism 
of interactions between BMPs and gonadotropins are 
associated with major disruption in the BMPs and/or 
gonadotropins’ natural system, adding further limitations 
to the ability to elucidate the actual mechanism(s) of 
interaction.

For example, Abel et al.25 have generated a transgenic 
mouse model characterized by a total body knockout of 
the Follicle-Stimulating Hormone Receptor (FSHRKO). 
The FSHRKO female mice were infertile, and the ovaries 
were significantly small than in their littermate’s control. 
In addition, the inactivation of FSHR resulted in the arrest 
of folliculogenesis at the preantral stage, lack of response 
to exogenous Pregnant Mare’s Serum Gonadotropin 
(PMSG), and significantly higher serum FSH in the 
mutant mice25. 

BMP receptor-1B (BMPR1B) is the main receptor 
utilized by many members of BMPs including BMP-
2, BMP-4, BMP-7, GDF9, and BMP-15. Among them, 
BMP-4 was reported to play a role in the formation of 
PGCs19,26, recruitment of primordial to primary follicles in 
Booroola sheep, an animal strain characterized by a natural 
point mutation in the BMPR-1B27, and rats14. BMP-4 
is particularly involved in the regulation of estrogen 
production, inhibition of progesterone biosynthesis, and 
ovulation13,14,19. Although it is well known that the above-
mentioned processes are gonadotropins-dependent, the 
exact mechanism by which BMP-4 directly or indirectly 
exerts its regulatory action in these processes is not 
well elucidated. Recently, we have developed a mouse 
model characterized by a short-term attenuation (not 
knockout) of the BMPs signaling system using a passive 
immunization technique against the BMPR-1B and BMP-
47,28,29. This model has been found suitable to study the 
role of BMPs in the formation and maintenance of the 
primordial follicle reserve, controlling the unnecessary 
transition of the primordial follicles to developing 
primary follicles, and promoting the cyclic follicle 
development and ovulation7. In addition, this model 
demonstrated that the early stage of follicle development 
is mainly driven by the action of the BMPs signaling 
system7. In the present study, we aimed to investigate 
the reciprocal interaction between the BMPs signaling 
system and the action of gonadotropic hormones in the 
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three key limiting stages of folliculogenesis using the 
in-vivo mouse model and, more specifically, to decipher 
the effects of attenuation of BMPR1B signaling on the 
dynamic process of gonadotropin receptors (FSHR and 
LHCGR) expression in three stages of folliculogenesis 
using our mouse model7,28,29. 

2. Materials and Methods
2.1 Animal Care and Passive Immunization
The in vivo experiments were carried out in the Animal 
House Facility of the University of New England, NSW, 
Australia, in accordance with the Australian code of 
practice for the care and use of animals for scientific 
purposes, and approved by the University of New 
England Animal Ethics Committee. To study the effect 
of the BMPs signaling system on the process of follicle 
development, pre-pubertal (three weeks old) female 
Swiss mice were devided into six groups (n=10-12 for 
each group). Daily subcutaneous injections (100 µL) of 
the following treatments were administrated for 7 days as 
follows: the first group received a dose of 50 mg in 100 
µL of anti-BMP4; the second group received 50 mg in 
100 µL anti-BMPRIB; the third group received 1 IU in 
100 µL equine chorionic gonadotropin (eCG; Bioniche 
Animal Health, Armidale, NSW, Australia); the fourth 
group received 1 IU of eCG with anti-BMP4 in 100 µL; 
the fifth group received 1 IU eCGC with anti-BMPRIB; 
and the sixth group received 50 mg purified non-immune 
chicken IgY in 100 µL, as the control group. Mice were 
euthanized by CO2 inhalation and decapitated after being 
anesthetized 24 hours after the last injection. From each 
mouse, one ovary was collected and snap-frozen in liquid 
nitrogen and stored at -80°C for 2 weeks before being 
cryosectioned for immunofluorescent staining. The other 
ovary was stored in RNAlaterⓇ solution (Ambion, TX, 
USA) overnight at 4°C and processed for RNA extraction.

2.2 Antibody Preparation
The antibodies of BMP4 (JMCK#54) and BMPRIB 
(JMCK#59) were raised and characterized in our laboratory 
as described in detail in our previous publication. In 
brief, the antibodies were raised in chicken against 
synthetic peptides (Invitrogen Australia) equivalent to 
amino acids 88–102 (ISMLYLDEYDKVVLK) of mouse 
BMP4 and amino acids 103–117 of mouse BMPRIB 
(NKDLHPTLPPLKDRD)7,28,29. The synthetic peptides 

were conjugated to diphtheria toxoid (CSL) and emulsified 
in Freund’s complete adjuvant (Sigma–Aldrich Pty Ltd) 
for the primary vaccination and in Freund’s incomplete 
adjuvant for booster injections. The primary vaccination 
contained 50 mg of peptide, while all boosters contained 
25 mg of the peptide. The antibodies were purified from 
egg yolk using a combination of ammonium sulfate and 
octanoic acid as described30. The cross-reactivity of BMP2 
and BMP7 was <0.5% for the anti-BMP4 antibody and 
the specificity of the BMPRIB antibody was determined 
by the competitive binding ELISA test against random 
peptides7,29. The DELTA-BLAST analysis showed that the 
sequence was specific to mouse BMPRIB with no potential 
binding to other proteins. These antibodies were used to 
passively vaccinate mice using 50 mg of purified antibody 
in 100 mL of saline injected subcutaneously. The dose of 
antibody was similar to that we have used previously28 and 
was determined by pilot studies.

2.3 Immunofluorescent (IF) Localization 
of BMPR1B, FSHR, and LH-CGR Protein 
Receptors
This procedure has been described in full detail in our 
previously published articles7,31. In brief, the entire ovaries 
were placed in a PCR tube and snape-frozen for 20 
seconds in liquid nitrogen (N2), then stored at -80°C for 
two weeks before sectioning for IF staining. After that, the 
whole frozen ovary was partially embedded in an optimal 
cutting temperature compound (OCT) and cut into 10 
µm sections using a cryostat (Carl Zeiss, Sydney, NSW, 
Australia). Sections were mounted on Super-frost slides 
(HD scientific supplies Pty Ltd., Australia) and processed 
for immunofluorescent labeling as previously described31. 
Briefly, tissue sections were fixed in 4% paraformaldehyde 
at 4°C for 7 min. For the negative control, tissue sections 
were incubated with rabbit non-immune serum (Life 
Technologies VIC, Australia) instead of primary 
antibodies. Polyclonal goat anti-BMPR1B (sc-5679), anti-
FSHR (sc-7798), and anti-LH-CGR (sc-293165) (Santa 
Cruz Biotechnology) were applied at 4 µg/mL overnight 
at 4°C in a humidified chamber. The antibodies’ specificity 
was validated in our previous study32. A polyclonal rabbit 
anti-goat IgG second antibody conjugated to Alexa 488 
fluorochrome (A-11078, Life Technology) was applied 
to all slides at 4 µg/mL for 45 min at room temperature. 
The slides were washed and mounted using Prolonged 
Diamond anti-fade mounting media with DAPI (P-36962, 
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Life Technologies, VIT, Australia). Sections were analyzed 
using an inverted confocal microscope (AR1+/A1+; 
Nikon Corporation, Tokyo, Japan). Images were captured 
using A1 software (Nikon Corporation, Tokyo, Japan).

2.4 mRNA Extraction and RT-PCR
The RNA was extracted using Trisol reagent according to 
manufacturer’s instruction and as previously reported32. 
RNA quality and integrity were verified using 1% RNA 
agarose gel (CSBC 2011) and measured and quantified 
using a Nanodrop ND-1000 spectrophotometer (Thermo 
Fisher Scientific, Inc., Wilmington, DE). Reverse 
transcription was performed by annealing 2 µg of total 
RNA with 20 oligos (dT)15Primer (Fisher BioTec, Subiaco 
WA) at 70 °C for 15 min and immediately transferred to 
ice. 

Gene-specific primers (Table 1) were designed using 
NCBI Primer-Blast tools as described33. Quantitative 
RT-PCR reactions were conducted in triplicate using 
16 ng complementary DNA (cDNA), in Fast Evagreen® 
qPCRMaster Mix (Biotium, Hayward, CA) using a CAS 
1200 automated PCR setup robot (Corbett Robotics, 
Eight Mile Plains, QLD) and qPCR carried out using a 
Rotor-Gene R6 6000 Real-Time Analyzer (Corbett Life 
Science, Concord, NSW). Relative differences in gene 
expression were calculated using the formula: fold change 
= 2^ (control ΔCt − sample ΔCt). 

2.5 Quantification of Receptor Expressions 
in 3D Immunofluorescent Images
The principle of this methodology lies in measuring 
and quantifying the background-corrected 
immunofluorescent signaling corresponding to the 
cell receptor protein at the Region Of Interest (ROI) at 
random locations, and normalizing that measurement 
against the same receptor protein that does not change 

under the chosen experimental condition (wild type or 
control animal). Previously, we used this approach in 
combination with computer-based 3D image analysis 
of the immunofluorescent signal to study the dynamic 
interaction between BMPs and the gonadotropins in a 
different stage of follicle development in sheep32. Briefly, 
the exposure time was set by omitting the primary 
antibody and replaced by rabbit non-immune serum to 
avoid autofluorescent and non-specific antibody binding. 
The fluorescent signals observed after using the first 
antibody were taken as the base to further subtract the 
signals generated by autofluorescence and non-specific 
binding. A surplus of the fluorescent signal observed 
after subtraction was considered a positive signal and 
used in the quantification analyses. In Graafian follicles, 
the quantification of the protein expression of the three 
receptors was performed on granulosa cells by placing 
three random (9x103) µm3 sections in three different 
locations of the follicle, and the average of the quantified 
intensities was used in the calculation (Figure 1A). The 
same principle was applied to the secondary follicles with 
(1x103) µm3 sections (Figure 1B) and primary follicles 
with 250 µm3 in two locations of the follicles (Figure 1C). 
Three-D image analysis was performed using Velocity 
3D Image Analysis Software, version 6.2 (Perkin Elmer; 
Waltham, MA, USA). All the analyses were performed 
on the signals generated from granulosa cells only. The 
selection of the follicle stages was done according to the 
classification scheme already published34.

2.6 Data Analysis
Receptor protein expression intensities were assessed in 
multiple stages of folliculogenesis (primary, secondary 
and Graafian follicles), between the treated and untreated 
animals and were analyzed using two-way ANOVA 
followed by a Bonferroni post hoc test for multiple 
comparisons. The data are presented using Prism version 

Table 1. List of gene primers used for RT-PCR
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Figure 1.   Schematic representation of three stages of follicles. A. Graffian follicle’s granulosa cells stained with DAPI 
fluorescent nucleus photoconverted to red; B. secondary follicle; C. primary follicle; D. a 3D image of Graafian follicles generated 
by compiling 10 µm Z-stack images demonstrating the granulosa cell nucleus staining with DAPI (blue) and BMPR1B (green).

6 (Graph Pad Software, La Jolla, CA, USA) as means ± 
standard deviations/ standard errors. Quantification of 
the relative changes in the gene expression in the samples 
was done using the 2^-ΔCT method adapted from Livak et 
al.35. Relative PCR amplification of the target genes was 
calculated after normalization with the housekeeping 
reference gene (β-actin) as described36. Differences in 
the expression level between the treated and untreated 
animals, in whole ovaries, were analyzed using one-way 
analysis of variance (ANOVA) followed by a student–
Newman–Keuls multiple range tests, using the Prism 
version 6 (Graph Pad Software, La Jolla, CA, USA). 
For statistical analyses, the differences were counted as 
significant at p<0.05.

3. Results
3.1 Immunofluorescent Localization of 
BMPR1B, FSHR, and LH-CGR in multiple 
Stages of Ovarian Follicle Development
The Immunofluorescent labeling of BMPR1Bin the 
control (untreated) animals revealed positive staining 

on the granulosa cells of three different stages of the 
ovarian follicle: primary follicle (Figure 2A,B), secondary 
follicle (Figure 2C,D), and Graafian follicle (Figure 
2E,F). Staining of FSHR showed positive staining limited 
to granulosa cells of primary follicle (Figure 2G,H), 
secondary follicle (Figure 2I,J), and Graafian follicle 
(Figure 2K,L). Luteinizing hormone/choriogonadotropin 
receptor(LHCGR) staining was absent in granulosa cells 
of primary follicle (Figure 2M,N), and positive staining 
was observed on the granulosa cells of secondary (Figure 
2O,P) and Graafian follicles (Figure 2Q,R). In animals 
treated with anti-BMP-4 antibodies, there were no 
differences observed in the immunofluorescent staining 
of BMPR1B, FSHR, and LH-CGR in all stages of ovarian 
follicle development (data not shown) compared to the 
untreated control. In animals treated with anti-BMPR-1B 
antibody, stronger signals of BMPR1B were observed in 
the granulosa cells of primary (Figure 3K, L), secondary 
(Figure 3A,B), and Graafian (Figure 3E,F) follicles when 
compared to the staining of granulosa cells from control 
untreated animals (Figure 3C,D and Figure 3G,H), 
respectively. Similarly, immunofluorescent staining of 
the FSHR in granulosa cells of treated animals showed 
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stronger signals in secondary and Graafian follicles but 
not in granulosa cells of primary follicle (data not shown). 
On the other hand, no labeling signal was detected for 
LH-CGR in granulosa cells of primary follicles regardless 
of treatment (data not shown).

 3.2 Quantification of BMPR1B, FSHR, 
and LH-CGR in Mutiple Stages of 
Folliculogenesis
To determine the dynamic interaction between BMPs and 
gonadotropins, a quantitative analysis of the intensity of 

the fluorescent signals was performed in multiple stages 
of follicle development. In the primary follicles, the 
expression of BMPR1B in mice treated with BMPR1B 
antibody (with or without eCG) was significantly higher 
than in the control group (Figure 4 A). On the other hand, 
no changes were observed in the FSHR expression in 
primary follicles from mice treated with anti-BMPR-1B 
(with or without any treatment) (Figure 4B). Consistent 
with the microscopic observation mentioned above, the 
digital analysis revealed that LGCR labeling was not 
detected in the granulosa cells of primary follicle (Figure 
4C). In secondary follicle, animals treated with anti-

Figure 2.   Immunofluorescent localization of BMPR1B, FSHR, and LH-CGR in three stages of follicles in the control group 
(wild type). A G, and M. Merged images (two filters) of ovary sections from the control group, showing primary follicles with 
positive green staining (arrows) of BMPR1B (A) and FSHR (G) but not of LGCR (M), and DAPI staining of the nucleus (red). 
B and H. Single filter images of BMPR-1B staining (green) of the same follicles in A and G, highlighting the cell membrane 
expression pattern on the granulosa cells. N. A single filter image of LGCR staining in the same follicle in M, showing negative 
labeling. C, I, and O. Merged images of the ovary sections from control group, showing secondary follicle with positive staining 
of BMPR1B (C), FSHR (I), and LGCR (O) (green) and DAPI staining (red) of granulosa cells. D, J, and P. Single filter images 
of BMPR1B, FSHR, and LH-CGR in the same follicles are shown in C, I, and O, respectively, highlighting the cell membrane 
expression pattern on granulosa cells (green, arrows). E, K, and Q. Two filters merged images of the ovary sections from 
control group, showing Graafian follicles with positive staining of BMPR1B (F), FSHR (K), and LH-CGR (Q) (green) and DAPI 
staining (red) of the granulosa cells. F, L, and R. Single filter images of BMPR1B (F), FSHR (L), and LH-CGR (R) in the same 
follicles are shown in E, K, and Q, respectively, highlighting the cell membrane expression pattern on the granulosa cells (green, 
arrows). GC, granulosa cells.
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Figure 3.   Comparison of the immunofluorescent staining intensity of BMPR1B in three stages of follicles in treated 
(immunized) and untreated (control) animal groups, using anti-BMPR1B antibody. A and E. Merged images of ovary sections 
from animals treated with anti-BMPR1B, the secondary follicle (A), and Graafian follicle (E) showing positive staining of 
BMPR1B antibody (green) and DAPI (red) of granulosa cells. B and F. Single filter images of BMPR1B staining (green) of the 
same follicles in A and E, highlighting the cell membrane expression pattern on the granulosa cells. C and G. Two filters merged 
images of the ovary sections from the control group showing secondary follicle (C) and Graafian follicle (G). D and H Single 
filter images of the same follicles in B and F from treated animals, showing stronger intensity of staining when compared to D 
and H from the untreated animal group. GC, granulosa cells; O, oocyte.

BMPR-1B (with or without eCG) showed a significant 
increase in BMPR1B, FSHR, and LH-CGR expression 
compared to control group (Figure 4D, E, F), respectively. 
Interestingly, treatment with eCG alone did not induce 
significant changes in the BMPR1B and LH-CGR 
protein expression in granulosa cells of secondary 
follicles (Figure 4D, F) whereas, FSH-R was significantly 
upregulated (Figure 4E). In Graafian follicle, animals 

treated with anti-BMPR-1B (with or without eCG) 
showed a significant increase in the BMPR1B, FSHR, 
and LH-CGR expression compared to control group 
(Figure 4G, H, I), respectively. Administration of eCG 
alone resulted in upregulation of FSHR and LH-CGR in 
the granulosa cells of Graafian follicles (Figure 4H,I) but 
not in BMPR1B expression (Figure 4G). Interestingly, no 
changes in receptor expression of BMPR1B, FSHR, and 
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LH-CGR were observed in mice treated with anti-BMP-4 
(with or without eCG; data not shown) at any stage of 
follicle development (Figure 4A-I).

3.3 Expression of Bmpr1b, Fshr, and Lhcgr
To study the dynamic interaction between BMPs and 
gonadotropins at the molecular level, we measured 
the levels of mRNA gene expression of the Fshr, Lhcgr, 
and Bmpr1b in the ovaries. The expression of Fshr and 
Lhcgr genes was significantly higher in mice treated with 
BMPR1B antibody (with or without eCG) than in the 
control group (Figure 5A, B). Different from the protein 
expression, eCG treatment also resulted in a significant 
increase in Fshr and Lhcgr gene mRNA expression, 
respectively (Figure 5A, B). Similarly, animals treated 
with anti-BMP-4 antibodies showed no changes in the 
mRNA level of Fshr and Lhcgr genes (Figure 5A, B). The 
Bmpr1b was noted to be elevated in the ovaries of mice 

treated with BMPR1B antibody (with or without eCG) 
(Figure 3C). 

4. Discussion
The present study demonstrates some aspects of 
the interaction between the intraovarian BMPs and 
gonadotropins, FSH and LH, in the regulation of 
folliculogenesis in vivo using a unique mouse model 
developed in our laboratory. In this model, both BMPs 
and gonadotropin signaling systems appeared to be 
normally functional. While gonadotropins in this 
study were responsive to exogenous eCG, the BMPs 
signaling system was partially attenuated, due to passive 
immunization against BMPR-1B and BMP-4. In addition, 
the mechanism of interaction was investigated for the first 
time the three principal stages of follicular development 
in vivo, where ovarian function is fully active. Moreover, 

Figure 4.   In situ quantification of the BMPR1B, FSHR, and LH-CGR receptors expression (pixel/μm2) in three stages of 
follicle development after different treatments. 10-12 mice per group and 20follicles per ovary were subjected to quantification.
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the effects of immunization on the nature of interaction, 
expressed by the levels of gonadotropin gene expression 
in the ovary, have not been previously reported.

The mouse model used in this study has previously 
been used as suitable to investigate many aspects of 
ovarian functions as reported7,28,29. The localization and 
quantification of BMPR1B, FSHR, and LH-CGR were 
carried out by in situ immunofluorescent localization 
combined with computer-based quantitative analysis of 
3D images. This method proves to be an efficient tool to 
quantify the expression of a small amount of protein in a 
complex tissue such as ovary31.

In this study, we report that attenuation of BMPR-1B 
signaling leads to up-regulation of BMPR-1B in all stages 
of follicular development, probably due to an auto-
compensatory effect to overcome the inhibitory effect 
on BMPR-1B signaling function. A similar result of 
up-regulation was previously reported in Booroola sheep, 
which is characterized by a natural point mutation in the 
BMPR-1B37.

In the primary follicles, the attenuation of BMPs 
system showed no effect on the FSH-R protein expression 

with and without eCG administration, providing further 
evidence that the early stage of follicle development is 
gonadotropin-independent but is driven by BMPs rather 
than FSH or LH as previously reported7,38,39. On the other 
hand, in secondary and Graafian follicles, attenuation of 
BMPR-1B signaling system resulted in up-regulation of 
FSHR and LH-CGR in granulosa cells, which explains 
the enhanced sensitivity of granulosa cells towards 
gonadotropins, as previously reported40. Interestingly, the 
administration of eCG resulted in up-regulation of FSHR 
expression in the granulosa cells of secondary follicles 
only, whereas expression of both FSHR and LH-CGR 
were increased in Graafian follicles. The elevation of FSHR 
after eCG administration can be attributed to increased 
FSH production40, which in turn leads to up-regulation 
of FSH-R expression41. Using a different experimental 
approach we have previously reported a similar pattern 
of up-regulation of expression of FSHR and LH-CGR in 
Booroola sheep with a natural point mutation in BMPR-1B37. 
As a result, the increase in sensitivity of follicular cells to 
gonadotropins has been linked with enhanced cellular 
proliferation and differentiation41, reduced apoptotic 

Figure 5.   Relative expression (mRNA) levels of Fsh and Lhcg receptor genes in the whole ovary after different treatments. The 
difference was considered significant at (p< 0.05). A. Fshr relative mRNA expression level; B. Lhcgr relativemRNA expression 
levels; C. Bmpr1b relative expression level in the whole ovary (n= 10-12).
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activity42, and luteinization in Booroola sheep27 and 
mice7, and increased steroidogenic activity14,20,43,44, and 
improved oocyte-granulosa cells communication45,46. In 
humans, the increase in follicular cell sensitivity towards 
gonadotropins underlines the cyclic recruitment of mature 
follicles for further development towards ovulation at 
midcycle thereby improving fertility47. BMP-4 is the main 
BMP ligand, which signals via the BMPR-1B system, 
and has been implicated in the regulation of several 
aspects of folliculogenesis such as initial formation of 
ovarian follicle reserve19,43 and recruitment of primordial 
follicles into the cohort of developing follicles in Booroola 
sheep27 and rat14, in addition to estrogen production, 
inhibition of progesterone and ovulation13,19. In this 
study, immunization against BMP-4 producedno effect 
on protein or RNA expression of FSHR, LHC-GR, or 
BMPR-1B at any stage of follicle development. Based on 
previous reports7,27 and data from this study, we propose 
for the first time that, unlike attenuation of its signaling 
pathway (via BMPR-1B), dysregulation of BMP-4 ligand 
function by immunization has no impact on the regulatory 
interaction between the BMPs and gonadotropins 
signaling systems, such as protein and/or RNA expression 
of their receptors. In conclusion, the outcomes of this 
study imply that follicle development is tightly controlled 
by reciprocal interaction between intraovarian BMPs 
and gonadotropin signaling systems. In addition to the 
direct role of BMPs in follicle development, the present 
tudy demonstrates that BMPs also exert indirect actions 
in the regulation of follicle development by enhancing 
the granulosa cell’s sensitivity to gonadotropins via 
up-regulation of the expression of FSHR and LH-CGR. 
We propose that downregulation of the intraovarian 
BMP signaling system appears to be a pre-requisite for 
the major action of gonadotropins at the later stages of 
folliculogenesis and can be used as a suitable clinical 

tool to improve human fertility by increasing primordial 
follicle reserves as we previously reported7.
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