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Abstract
Di-(2-Ethylhexyl) Phthalate (DEHP) is a potent endocrine disruptor that is commonly present in consumer products and 
cosmetics. Exposure to DEHP during gestational and lactational periods can adversely affect glucoregulation and lead 
to the onset of diabetes in progeny. The liver and gastrocnemius muscles play an important role in regulating glucose 
metabolism and insulin action. This study was designed to investigate the effect of maternal DEHP exposure on insulin 
signaling molecules in the liver and gastrocnemius muscles of adult female offspring rats. Rat dams were given DEHP (10 
and 100 mg/kg b.wt./day) by oral gavage from gestation day 9 (GD 9) to the end of the lactation period Postnatal Day 
(PND) 21. On PND 80, female offspring rats in diestrus were euthanized and found reduced body weight, organ (liver and 
gastrocnemius) weight, and hyperglycemia in DEHP-exposed rats. Western blots revealed a dose-dependent reduction in 
the expression of Insulin Receptor - (IR), IRS, Akt, and GSK-3β proteins as well as their phosphorylated forms in the liver 
and gastrocnemius muscles of DEHP-exposed offspring rats. Maternal DEHP exposure reduced the levels of GLUT2 and 
GLUT4 level in the liver and gastrocnemius muscles, respectively. Liver and renal function markers were dose-dependently 
increased in the serum of offspring female rats born to DEHP exposed mother during gestation and lactation. Thus, the 
study revealed that maternal DEHP exposure impaired the expression of insulin signaling molecules in the two important 
tissues involved in glucose metabolism, the liver and gastrocnemius muscles, suggesting that phthalates exposure during 
development may contribute to the onset of diabetes in female offspring. 

1.  Introduction
Di (2-Ethylhexyl) Phthalate (DEHP) is a type of phthalate 
that finds extensive application in the manufacturing 
of plastics, cosmetics, medical equipment, and food 
packaging. As an endocrine disruptor, DEHP can interfere 
with hormone function in the body. Because DEHP is 
non-covalently bound to the polymer, it can contaminate 
the environment and food through product by leaching, 
resulting in widespread human exposure1-5. This exposure 
can lead to various illnesses affecting the immune 

system, brain, metabolism, and organ development6-8. 
As DEHP is a lipophilic compound, it can penetrate the 
placenta, affect the developing fetuses, and target vital  
organs9,10. Experimental studies demonstrated that 
DEHP has an unpropitious effect on both nutritional and 
metabolic states11-14. In type-2 diabetes, the body becomes 
resistant to insulin action and diminished insulin 
response to various target organs like the liver, skeletal 
muscles, and adipose tissue. Impaired insulin secretion 
and action contribute together to the development of type 
2 diabetes, where insulin resistance leads to pancreatic 
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beta cell failure15. The genetic and environmental factors 
are said to contribute mainly to the development of type-2 
diabetes16. 

The liver and skeletal muscles are the two vital organs 
that play a crucial role in glucose homeostasis. In the 
fasting state, the stored glycogen in the liver is converted 
into glucose through glycogenolysis and gluconeogenesis, 
which results in increased glucose in the blood17. In the 
post-prandial state, the excess glucose is converted into 
glycogen and through glycogenesis stored in the liver and 
skeletal muscle18. Skeletal muscle is the main target tissue 
for insulin-mediated glucose absorption, and defects in 
this tissue may lead to diseases like hyperglycemia, type 
2 diabetes, etc. People with type-2 diabetes are identified 
with defects in glucose synthesis and transport in skeletal 
muscle19. Glycogen production and glucose transport 
are impaired in type 2 diabetics19. Cell-specific glucose 
transporters and insulin receptors aid in the absorption 
and utilization of glucose. Impairment in insulin action 
causes an imbalance in hepatic glucose homeostasis, 
which causes disorders such as hyperglycemia and 
diabetes. 

Several studies have suggested that DEHP exposure 
may increase the risk of diabetes and insulin resistance, 
especially if the exposure occurs during critical periods 
of development. A study by Wang et al., reported that 
prenatal exposure to DEHP impaired glucose tolerance 
and insulin secretion in female offspring rats20. Another 
study by Yang et al., demonstrated that phthalates 
exposure can cause a high prevalence of type diabetes21. 
Phthalates cause diabetes by interfering with the insulin 
signaling pathway in vital organs that regulate glucose 
homeostasis. Our previous research explained that DEHP 
disrupted L6 myotubules viability via oxidative stress and 
caused a dose-dependent decline in the expression of 
insulin receptors, Glucose Transporter-4 (GLUT-4), and 
antioxidant levels, resulting in decreased glucose uptake 
and oxidation22. We also explained that maternal exposure 
to DEHP during the gestational and lactation period 
impairs insulin signal transduction in the liver resulting 
in defective glucoregulatory effects in F1 male offspring 
rats23. Ovarian steroid hormones are known to regulate 
hepatic lipid metabolism24 and control hepatic gene 
expression25. Considering the estrogenic nature of the 
DEHP, its exposure during development may influence 
the liver and gastrocnemius muscle function in female 
rats. Thus, this work was designed to understand the 

impact of gestational and lactational DEHP exposure on 
insulin signaling pathway in the liver and gastrocnemius 
muscles of F1 female adult rats.

2.  Materials and Methods

2.1  Chemicals 
Chemicals used in this study were purchased from 
Amersham Biosciences Ltd; Sigma Chemical, SRL, 
Mumbai, India; Bio-Rad, USA. Antibodies were 
purchased from Santa Cruz Biotechnology, CA, USA. 
HRP- conjugated secondary antibodies were procured 
from GeNei (Bangalore, India). 

2.2  Animals and Experimental Protocol
Adult female Wistar rats (120-130 g), procured from 
Central Animal House Facility, Dr. ALM Post Graduate 
Institute of Basic Medical Sciences, University of Madras, 
Taramani campus, Chennai, India, and maintained in the 
same facility as per the National Guidelines and Protocols. 
Rats were fed with standard chow (Lipton India Ltd, 
Mumbai, India) and water ad libitum. This experimental 
protocol was approved by the Institutional Animal Ethical 
Committee (IAEC No: 01/29/2015).

During the proestrus phase, female rats were paired 
(two females and one male) with proven male rats. The 
following morning, the presence of a copulatory plug or 
the presence of sperm in the vaginal smear was marked 
as Ggestational Day-1 (GD-1). Rat dams were exposed 
to DEHP (10 and 100 mg/ kg. b.wt./day) via oral gavage 
(GD-9 to PND 21), and control rats received vehicle (olive 
oil). Every morning, rat dams were weighed, and DEHP 
doses were calculated according to the body weight. As 
explained in our previous study26, the 10 mg/kg/day was 
based on occupational exposure, which can reach up to 10 
to 20 mg/kg/day27,28, and it is near to No-Observed-Effect 
Level (NOAEL). Whereas 100 mg/kg/day was selected 
based on both occupational and medical exposure as it 
can be as high as 167.9 mg/day29. The litter size was culled 
to six female pups/mother to make equal distribution of 
DEHP through milk. 

2.3  Estimation of Fasting Blood Glucose 
and Collection of Organs

Animals were fasted overnight at PND 80, and blood 
was taken from the tail tip to measure Fasting Blood 
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Glucose (FBG). FBG was estimated using On‐Call Plus 
Blood glucose test strips (ACON Laboratories, Inc., San 
Diego, CA, USA), and values were mentioned as mg/
dL. At the end of the experimental period, rats were 
anesthetized  with sodium thiopentone, blood was 
collected, sera were separated, and stored at -80°C. To 
clear blood from the tissues, isotonic saline (20 mL) was 
used for perfusion. The liver and gastrocnemius muscles 
were used for the study parameters. 

2.4  Assay of Renal and Liver Function 
Markers in Serum

Liver function markers such as Alkaline Phosphatase 
(ALP), Aspartate Aminotransferase (AST), and Alanine 
Aminotransferase (ALT) were assessed in the serum 
using kit procured from SPINREACT (Girona, Spain). 
To assess renal function, urea and creatinine levels in the 
serum were measured according to instructions found in 
the SPINREAT kit manual.

2.5  Western Blot Analysis
The protein levels of IRβ, pIRβTyr1162/11163, IRS-1, 
pIRS-1ser636, Akt, pAktTyr315, GSK3β, pGSK3βSer9, 
GLUT2 and GLUT4 (Santa Cruz Biotechnology, 
Dallas, USA) were analysed by Western blotting. The 
liver and gastrocnemius muscle were homogenized 
using Radioimmunoprecipitation Assay (RIPA) lysis 
buffer with protease inhibitor (Roche, Germany). The 
homogenate was centrifuged at 12,000 x g for 15 min at 
4ºC, and supernatant was collected. Using Bovine Serum 
Albumin as a standard, the protein concentration in the 
tissue samples  was quantified in triplicate. On a 10% 
sodium dodecyl sulfate-polyacrylamide gel, an equal 

amount of total protein (50 g/lane) was resolved and 
further transferred onto a PVDF membrane. (Bio-Rad 
Laboratories Inc, USA). To block the non-specific sites 
in the blots, 5% non-fat dry milk powder was used. Blots 
were incubated in primary antibodies (1:1000 dilution) 
overnight at 4oC. After washing, the blots were incubated 
with respective secondary antibodies conjugated with 
HRP (GeNei, Bangalore, India) in 1:10000 dilution. An 
enhanced Chemiluminescent reagent (Thermo Scientific, 
Illinois, USA) was used to detect the antigen-antibody 
complexes in the blots. The signals were captured and 
visualized by the ChemiDoc XRS system (Bio-Rad 
Laboratories, USA). The intensity of the signal was 
quantified by Quantity One image analysis system (Bio-
Rad Laboratories, USA). The same blots were stripped and 
reprobed with β-actin antibody (1:5000). The intensity of 
the protein bands was normalized with β-actin. 

2.6  Statistical Analysis
Results were given as means ± SEM. To compare the values 
of control and DEHP treated groups, we used a one-way 
analysis of variance followed by Students Newman Keul’s 
test (GraphPad Prism version 8, GraphPad Software, 
California, USA). The difference among groups was 
considered significant for p < 0.05. 

3. Results

3.1  Maternal DEHP Exposure Decreased 
Body Weight, Organ Weight and 
Increased Fasting Blood Glucose Level

Developmental DEHP exposure decreased the body 
weight gain in female offspring rats in a dose-dependent 

Figure 1. Effect of gestational and lactational DEHP exposure on body weight (A) and fasting blood glucose 
(B) of female offspring.
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manner (Figure 1A). Fasting blood glucose levels were 
elevated in rats born to DEHP-exposed mothers (Figure 
1B).

Each value represents Mean ± SEM of 6 rats; p < 0.05, 
a- compared with control; b- compared with 10 mg DEHP.

3.2   Maternal DEHP Exposure Engenders 
the Risks of Hepatic and Renal 
Dysfunction in Female Progeny Rats. 

Maternal DEHP exposure significantly increased the 
serum levels of liver function (SGOT, SGPT, and ALP) 
(Figure 2A) and renal function markers (urea and 
creatinine) in female offspring rats (Figure 2B).

Each value represents Mean ± SEM of 6 rats; p < 0.05, 
a- compared with control; b- compared with 10 mg DEHP.

3.3  Maternal DEHP Exposure Impairs 
the Protein Expression of Insulin 
Receptor and IRS-1 in the Liver and 
Gastrocnemius Muscles of Female 
Progeny Rats

DEHP exposure during gestation and lactation periods 
impaired glucose homeostasis by altering the insulin 

signaling molecules. We checked the expression of 
molecules involved in insulin signal transduction in 
rat liver and gastrocnemius muscles. Western blot data 
revealed the decreased level of IR-β (Figure 3A-liver; 
6A-GM) and its phosphorylated form (Figure 3B 
-liver; 6B-GM) was significantly reduced in the DEHP-
exposed groups. We further analyzed IRS-1 and its serine 
phosphorylation and found a dose-dependent decrease in 
IRS-1protein expression (Figure 3C), whereas the serine 
phosphorylated form (Figure 3D) was upregulated in the 
liver of DEHP-exposed female progeny rats.

Each value represents Mean ± SEM of 6 rats; p < 0.05, 
a- compared with control; b- compared with 10mg DEHP.

3.4  Maternal DEHP Exposure Alters the 
Downstream Molecules of Insulin 
Signal Transduction in Rat Liver and 
Gastrocnemius Muscles

We further examined the expression of intracellular 
signaling molecules involved in insulin signal 
transduction by western blotting to understand the effects 
of the decreased IR-β, IRS-1, and their phosphorylated 
forms in the liver and gastrocnemius muscles of the 
female offspring rats. 

Figure 2. (A) Effect of gestational and lactational exposure to DEHP on liver function markers of F1 female 
offspring. (B) Effect of gestational and lactational exposure to DEHP on kidney function markers of F1 female 
offspring.
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 We observed a dose-dependent decrease in the 
protein level of Akt (Figure 4A -liver; 7A-GM) and its 
phosphorylated form (Figure 4B -liver; 7B-GM) in DEHP-
exposed offspring rats. Furthermore, it was found that 
in DEHP-treated rats, GSK-3 was increased (Figure 4C 
-liver; 7C-GM), and its serine phosphorylation form was 
dramatically downregulated (Figure 4D -liver; 7D-GM). 
The protein levels of glucose transporter-2 (GLUT-2) in 
the liver (Figure 5) and GLUT-4 in the gastrocnemius 
muscle (Figure 8) were lower in the female offspring rats 
exposed to DEHP during pregnancy and lactation period.

Each value represents Mean ± SEM of 6 rats; p < 0.05, 
a- compared with control; b- compared with 10mg DEHP.

 Each value represents Mean ± SEM of 6 rats; p < 0.05, 
a- compared with control; b- compared with 10 mg DEHP.

Figure 3. Effect of gestational and lactational exposure 
to DEHP on insulin receptor, (A) p-IR-β Tyr 1162/11163 (B), 
IRS-1 (C), p- IRS-1 ser 636 (D), proteins in the liver of F1 
female offspring rats. 

Figure 4. Effect of gestational and lactational exposure 
to DEHP on Akt (A), p-AktTyr315/316/312, (B), GSK -3β (C) 
and p- GSK-3β ser9 (D), proteins in the liver of F1 female 
offspring rats.

Figure 5. Effect of gestational and lactational exposure 
to DEHP on GLUT 2 proteins in the liver of F1 female 
offspring rats. 

Figure 6. Effect of gestational and lactational exposure 
to DEHP on Insulin Receptor (A), and p- IR-β (Tyr 
1162/11163) (B), proteins in gastrocnemius muscle of F1 
female offspring. 
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Figure 7. Effect maternal DEHP exposure on Akt (A), 
p-Akt (Tyr315/316/312) (B), GSK -3β (C) and p-GSK-3β 
(ser9) (D) proteins in gastrocnemius muscles of F1 female 
offspring rats.

Figure 8. Effect of gestational and lactational exposure 
to DEHP on GLUT4 protein gastrocnemius muscle of F1 
female offspring.

Each value represents Mean ± SEM of 6 rats; p < 0.05, 
a- compared with control; b- compared with 10 mg DEHP.

Each value represents Mean ± SEM of 6 rats; p < 0.05, 
a- compared with control; b- compared with 10 mg DEHP.

Each value represents Mean ± SEM of 6 rats; p < 0.05, 
a- compared with control; b- compared with 10mg DEHP.

4.  Discussion 
DEHP is an endocrine-disrupting chemical that can 

interfere with hormone function and increase the risk of 
diabetes mellitus. According to the existing reports, DEHP 
exposure during the developmental period could increase 
the risk of diabetes in progeny. This study explained the 
impact of maternal DEHP exposure on the insulin signal 
transduction in the liver and gastrocnemius muscles of 
progeny female rats. 

To begin with, we evaluated the effects of maternal 
DEHP exposure on blood glucose levels in F1 female 
offspring rats and found a dose-dependent increase 
in fasting blood glucose levels. Our previous studies 
explained that maternal DEHP exposure impairs insulin 
signal transduction and modifies glucoregulatory 
processes, leading to the development of type 2 diabetes in 
F1 male offspring in adulthood23,26. Our research suggests 
that when offspring are exposed to DEHP during their 
developmental period, they are more likely to get diabetes 
in adulthood.

Type-2 diabetes is a progressive condition in which the 
body becomes resistant to insulin action and diminished 
insulin response to various target organs like the liver, 
skeletal muscle, and adipose tissue. Insulin acts through 
its receptor on the cell membrane and maintains blood 
glucose levels. The decreased insulin receptor protein 
level is likely to contribute to defective insulin signal 
transduction and thus, elevated blood glucose levels 
in DEHP-exposed offspring rats. Insulin signaling is a 
complex process that involves the activation of IRS1 by 
insulin. However, IRS1 can also be phosphorylated on 
serine6,36 residue by various kinases, which can impair 
its function and lead to insulin resistance. DEHP has 
been shown to induce oxidative stress and inflammation 
in the liver, which can increase serine phosphorylation 
of IRS1 and reduce insulin sensitivity30. The serine 
phosphorylation of IRS1 is said to have a negative influence 
on insulin signal transduction31. Therefore, maternal 
DEHP exposure may contribute to the development 
of metabolic disorders such as diabetes and fatty liver 
disease by disrupting insulin signaling in the liver.

We measured the levels of insulin receptors and their 
phosphorylated form, as well as IRS1 and Akt, in the 
liver and gastrocnemius muscles of F1 female offspring 
rats exposed to low and high doses of DEHP. We found 
that DEHP reduced the expression and phosphorylation 
of insulin receptors in a dose-dependent manner in both 
tissues. This implies that the phosphorylation of insulin 
receptors depends on the number of unphosphorylated 
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insulin receptors available. Similarly, we observed a dose-
dependent decrease in the phosphorylation of IRS1 and 
Akt, which are downstream mediators of insulin signaling. 
This was accompanied by a reduction in the total protein 
levels of IRS1 and Akt, suggesting that DEHP affects their 
synthesis or stability. Therefore, our results indicate that 
DEHP impairs insulin signaling in female offspring rats 
by altering the expression and phosphorylation of key 
components of this pathway.

GSK-3β is a key enzyme that regulates glycogen 
synthesis in the liver and muscle. It phosphorylates 
and inactivates glycogen synthase, the enzyme that 
catalyzes the formation of glycogen from glucose32. In 
the present study, GSK-3β showed a significant increase, 
but its phosphorylation at serine9 decreased in a dose-
dependent manner in the liver and gastrocnemius muscle 
of DEHP-exposed female offspring rats, suggesting that 
DEHP impaired glycogen synthesis by activating GSK3β 
and inhibiting glycogen synthase. This may contribute to 
insulin dysfunction and metabolic disorders caused by 
DEHP.

GLUT4 is present in the skeletal muscle and adipose 
tissue, which is a glucose transporter responsible for the 
uptake of glucose33,34. GLUT2 is a bi-directional glucose 
transporter found in the liver, pancreatic β-cells, kidney, 
and to some extent in the brain. Levels of GLUT 2 protein 
in the liver and GLUT4 protein in the gastrocnemius 
muscle are downregulated in DEHP exposed offspring 
rats. The decreased GLUT4 in gastrocnemius muscle is 
suggestive of impaired glucose uptake and its subsequent 
disposal, which may contribute to elevated blood glucose. 
Probably, DEHP-induced blunting of insulin action 
contributed to these changes. The decrease in GLUT2 
in the liver is indicative of defective uptake as well as the 
release of glucose because of impaired glucoregulatory 
function. In this regard, further studies on gluconeogenesis 
and glycogenesis would be interesting. The present study 
suggests that DEHP may influence insulin sensitivity 
and the uptake of glucose by affecting the expression of 
genes involved in glucose metabolism. One of the key 
mechanisms of action of DEHP is through the activation 
of Peroxisome Proliferator-Activated Receptors (PPARs), 
which are nuclear hormone receptors that regulate 
gene expression35. DEHP can act as a ligand for PPARs 
and modulate their transcriptional activity, resulting in 
various biological effects, including hepatotoxicity and 
reproductive toxicity.

The liver is the vital organ where the detoxification 
mechanism takes place. The enzymes in the liver, such 
as ALP, ALT, and AST are considered liver function 
markers that involve in protein metabolism. When there 
is an abnormal level of these enzymes, it represents 
inflammation, liver damage, and liver dysfunction. These 
enzymes within the liver cells enter the bloodstream when 
hepatocytes are damaged36. DEHP is considered a toxic 
substance and affects the integrity of the cell membrane 
by inducing oxidative stress37,38. In this study, there was an 
increase in all three enzymes in dose-dependent manner 
in DEHP exposed offspring rats, showing damage in cell 
membrane and mitochondria. The kidneys are responsible 
for excreting nitrogen wastes and excess fluids from the 
body. As a kidney function indicator, urea, creatinine, 
uric acid, bilirubin, and other protein metabolites are 
measured. It is considered renal dysfunction when these 
substances are present in an abnormal amount in the 
serum or urine39. DEHP is a toxic substance that can 
harm the kidneys. The more DEHP a person is exposed 
to, the higher the risk of kidney damage40. This is shown 
by the increase in serum urea and creatinine levels, which 
are markers of kidney function. It is inferred that DEHP 
exposure during early life can have long-term effects on 
the liver and kidney function in the offspring. 

5. Conclusion
In conclusion, DEHP exposure during gestation and 
lactation period develop the metabolic disorder in 
female progeny by disrupting the action of insulin in the 
liver and gastrocnemius muscles. We also suggest that 
hepatotoxicity and renal toxicity brought on by DEHP 
exposure may exacerbate metabolic disorders in the 
progeny in adulthood.
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