
J Endocrinol Reprod 8 (I) (2): 69-82 (2004) 69 
JER 49 

THE THYROID GLAND AND OXIDATIVE STRESS; THE ROLE OF 
MELATONIN 

KARBOWNIK M '̂̂  and LEWINSKIA ^ 2 

'Department of Endocrinology and Isotope Therapy, Medical University of Lodz;^ Polish Mother's 
Memorial Hospital - Research Institute, 281/289, Rzgowska St., 93-338 Lodz, Poland. E-mail : 
alewin@csk.am.lodz.pl 

SUMMARY 

Reactive oxygen species (ROS) and free radicals participate in physiological and 
pathological processes in the thyroid gland. For example, the role of hydrogen peroxide 
(H^Oj) is crucial for thyroid hormone biosynthesis. Also other free radicals or reactive 
species, formed from iodine or tyrosine residues, are produced during thyroid hormone 
synthesis in physiological conditions. In turn, much evidence has been accumulated, 
showing that thyroid diseases, e.g., Graves' disease, non-toxic goitre formation or thyroid 
cancer, are accompanied by enhanced oxidative stress. The presence of some antioxidants 
has been found in the thyroid. Melatonin (N-acetyl-5-methoxytryptamine) -the main secretory 
product of the pineal gland is a well-known antioxidant and free radical scavenger, widely 
distributed in the organism. Mutual relationships between the pineal gland and the thyroid 
have-for a long time-been a subject of intensive research. The abundant to-date's evidence 
relates mostly to the inhibitory action of melatonin on the thyroid growth and function. 
Recently, experimental models have been developed, showing- among others-protective 
effects of melatonin against oxidative damage to lipids in the thyroid gland. Thus, free 
radicals and antioxidants, melatonin included, may participate in both physiological and 
pathological processes in the thyroid, what has already been partially documented. 
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INTRODUCTION 

Reactive oxygen species (ROS)and free radicals are produced in living organisms, in certain 
amounts, under physiological conditions. An overproduction of ROS and free radicals causes oxidative 
stress and can lead to several diseases (1,2). The most basic reaction of oxidative stress is Fenton 
reaction, in which iron [as fen-ous ion (Fe^+)I participates: Fe^* + H^O^ -> Fe^* + OH + OH". Hydroxyl 
radical (OH), produced in this reaction, is the most toxic free radical. 

Melatonin (N-acetyt-5-methoxytryptamine) is produced in the pineal gland, as well as in 
numerous other tissues and organs (3). The indoleamine possesses properties of a hormone but 
also demonstrates other numerous characteristics, allowing its action in cellular compartments of all 
tissues and organs (4). Melatonin is a well-knowrf antioxidant and free radical scavenger, revealing 
preventive action against oxidative damage in different tissues (5-9). 

Relationship between the pineal gland and the thyroid gland 

In different animal species, a suppressive effect of melatonin on thyroid growth processes 
(10-14) and thyroid function (15-17) was shown. In contrast, thyroid hormones reveal mainly stimulatory 
effects on the pineal, as regards growth and secretory processes of this gland (18). Experimental 
evidence, concerning the relationship between the thyroid and the pineal gland, also in relation to 
oxidative stress (18-23)has recently been summarized. 
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' " Oxidative Stress and the thyroid 

The role of oxidative stress in the thyroid gland- experimental evidence 

Hydrogen peroxide (HjOj) 

HjOj is produced in the thyroid gland (24, 25) by tiie NADPH oxidase system of the apical 
membrane of thyroid follicular cells (thyrocytes) (26, 27); divalent reduction of oxygen, without 
superoxide anion radical (O^) generation, is involved in this process (28). 

H2O2 is an essential factor for thyroid hormone synthesis, acting as an electron acceptor at 
each step of this process, namely iodide oxidation and, next, its organification, and coupling reaction 
of iodotyrosines (23). This reactive species is crucial for thyroid peroxidase (TPO) activity. TPO is the 
key enzyme for thyroid hormone synthesis. It is a heme-dependent protein, thus it contains iron. On 
one hand, increased iron stores in the organism are associated with an increased risk of several 
diseases, cancer included (1, 29). On the other hand, however, iron is an essential element for 
metabolism in different tissues and organs, also in the thyroid. It has been shown in studies on 
animals and in human subjects that iron deficiency reduces TPO activity, enhances the consequences 
of iodine deficit, while iron supplementation improves the efficacy of iodine supplementation (30). 

Beside the main three steps of thyroid hormone synthesis, Hfi^ also participates in autocatalytic 
covalent heme binding to the apoprotein of TPO molecule, thereby stabilizing the activity of the enzyme 
(31). It has also been found that either ROS or free radicals decrease TPO activity in the thyroid gland, 
without influencing TPO mRNA; the authors have speculated that TPO inactivation occurs at the heme-
linked histidine residue of the enzyme molecule; this residue plays a critical role for TPO activity due to 
the presence of heme-derived iron, which potentially constitutes a substrate for Fenton reaction (28). 
Thus, while H^O^ is necessary for thyroid hormone synthesis, this ROS when being in excess may 
inhibit TPO activity, with a subsequent inhibition of thyroid hormone formation (28). 

There are presumptions that oxidative stress may be involved in the pathomechanism of 
hypothyroidism and goiter formation. Using dog thyroid cells, it has been found that thyrotropin (TSH) 
- the main hormone, stimulating secretory and growth processes in the thyroid - enhances Ĥ O^ 
generation through the cyclic adenosine 3',5'-monophosphate (cAMP) cascade (25). Thus, in any 
conditions of increased blood TSH concentration, mainly in case of hypothyroidism and in chronic 
stimulation of the thyroid gland due to iodine deficiency, an increased production of Ĥ O^ "^^st take 
place with subsequently enhanced formation of free radicals (especially OH). 

It is suggested that Hp^ participates in Wolff-Chaikoff 's effect, i.e. in a phenomenon which 
relies on the fact that iodides, when in excess, are able to inhibit iodine organification and subsequent 
thyroid honnone synthesis. Iodide was shown to strongly inhibit both protein iodination and H2O2 generation 
stimulated by TSH in dog thyroid slices (32). It is suggested that t>oth apoptosis and neaosis occur in the 
thyroid gland via the mechanism involving H^Oj, the former process resulting from lower, and the latter 
process from higher concentrations of this species under in vitro conditions (33). Because melatonin 
directly neutralizes Hfi^ (34) and is the most effective scavenger of OH (4), the indoleamine might prevent 
pathological processes in the thyroid caused by an excessive amount of Hp^-

Reactive nitrogen species 

Nitric oxide synthase (NOS) catalyzes the formation of free radical-nitric oxide (NO). An 
expression of mRNA for the three isoforms of NOS - brain (type I), endothelial (type III), and inducible 
(type II) has been detected in the rat thyroid gland (35-37). Nitric oxide has been found to inhibit cell 
proliferation in cultured human thyrocytes (38). Some data suggest that NO' participates in the 
regulation of thyroid hormone synthesis. While NO' inhibits TSH-stimulated iodide uptake by-probably-
stimulation of guanylyl cyclase (GO) activity and cyclic GMP (cGMP) production in calf thyroid (39), 
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the radical has been found to stimulate thyroid peroxidase activity \n monolayer cultures of primary 
human thyrocytes (40). 

It is known that melatonin directly neutralizes NO' (41) and peroxynitrite anion (ONOO) 
(42), the latter being a highly destructive product of the interaction betvî een the O^' and NO'. 
Additionally, melatonin has been demonstrated to inhibit the activity of NOS (5). There is also an 
indirect evidence that melatonin detoxifies 02(43). 

Other free radicals 

Numerous firee radicals and reactive species are undoubtedly involved in the complex process 
of thyroid hormone synthesis. According to experimental evidence or suggestions, the following 
radicals or reactive species are of special importance: tyrosine free radical (Tyr), diiodotyrosyl residue 
radical (DIT), diiodotyrosyl residue radical in thyroglobulin (Tg-DIT), iodine radical (I*), iodinium ion 
(r), hypoiodousacid intermediate[iO(IOH)], andascorbateradical (Asc)(44). 

Antioxidative defence mechanisms in the thyroid gland 

An antioxidative defence system in the thyroid gland comprises both antioxidative enzymes 
and free radical scavengers. The presence of the following antioxidative enzymes in the thyroid gland 
has been documented: superoxide dismutase (SOD) (45, 46)-, glutathione peroxidase (GSH-Px) 
(47), and catalase (CAT) (48). It should be stressed here that melatonin has been documented to 
stimulate the activity of SOD, GSH-Px, and CAT (5,6). Moreover, the presence of glutathione (GSH), 
a well known intracellular antioxidant, alpha- and gamma-tocopherols, and coenzyme Q has been 
found in human thyroid (49), and of ascorbic acid in hog thyroid (50). Ascorbic acid becomes a free 
radical itself in the process of scavenging free radicals in the thyroid gland (50). 

Peroxiredoxins (Prxs), antioxidative proteins involved in the regulation of cell differentiation 
and proliferation, have been found in human thyroid follicular cells and in FRTL-5 cells (51). Using 
FRTL-5 cells, it has b>een documented that Prxs are involved in the process of H^O^ elimination, 
when this oxygen species is produced in response to TSH, and that they protect thyroid cells from 
H^O -̂induced apoptosis (51). 

A positive immunostaining vwth antibodies against melatonin has been found in C cells in 
the rat thyroid gland (3, 52). It has not been examined till now whether melatonin is produced in 
thyroid follicular cells. However, because melatonin is able to reach any tissue or organ within very 
short time (5, 6), it is highly probable that the indoleamine is also available for the thyroid gland, 
when it is required to reveal antioxidative effects. 

Oxidative changes in the thyroid gland under pathological conditions 

The results obtained in humans and in animal models suggest that oxidative damage in the 
thyroid is accompanied by increased activities of antioxidative enzymes or increased production of 
antioxidants, what probably represents the defence mechanism (46, 47, 53). In case of human 
thyroid tissue - non-toxic nodular goitre, carcinoma (follicular and papillary) and follicular adenoma -
the highest level of lipid peroxidation products was found in carcinomas and it was still increased in 
adenomas, when compared to the level of lipid peroxidation products in control tissue and in nodular 
goitre; those changes were accompanied by increased activities of antioxidative enzymes, such as 
SOD, GSH-Px, and CAT, especially in carcinomas (47). 

A much higher amount of Prx I, measured by immunoblotting, has been found in follicular 
thyroid adenomas and carcinomas than in histopathologically unchanged thyroid tissue; additionally, 
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a significantly higher amount of Prx I has been found in thyroids collected from patients with Graves' 
disease than in normal thyroid tissue (54). 

The presence of immunochemical staining of SOD type II (inducible), and of mRNA for this 
enzyme was found in the human papillary thyroid carcinoma but not in normal human thyroid tissue 
(55). On the contrary, a decreased expression of mRNA encoding for CAT, and copper and zinc SOD 
were found in anaplastic thyroid carcinoma, when compared to histopathologically unchanged thyroid 
tissue and to differentiated thyroid tumors (56). 

Thus, in case of more advanced tumors or, generally, more serious diseases of the thyroid 
gland, more free radicals are generated, followed by an increased production of antioxidants or 
increased activities of antioxidative enzymes. However, at extremely advanced stages of diseases, 
like anaplastic carcinoma, the defence mechanisms remain inactive. 

Regarding the protective effects of melatonin against oxidative stress in the thyroid gland, 
experimental data have unfortunately been very scarce. However, we have found recently a protective 
aciion of meiaton'in againsi iipid peroxidation in porcine thyroid. Because iron is present in TPO, and 
H^Oj is essential for TPO activity, the thyroid gland may - under pathological conditions - be exposed 
to excessive amounts of either Fe^* or Hp^. or both. Ferrous iron and Ĥ O^ constitute substrates for 
Fenton reaction. 

Using an in vitro model of Fenton reaction, we have induced oxidative damage to lipids in 
homogenates of porcine thyroids; we have found that Fe^* plus H^O^ increased - in the Fe^* 
concentration - dependent manner - the level of lipid peroxidation products [malondialdehyde + 4-
hydroxyalkenals (MDA+4-HDA)]; at the same time, melatonin - in a concentration-dependent manner 
- decreased lipid peroxidation induced by Fenton reaction, with the lowest effective concentration of 
0.25 mM (57). We would like to indicate that the at)ove study is the first one show/ing lipid peroxidation 
induction by Fenton reaction and the protective influence of melatonin against oxidative damage in 
the thyroid tissue. 

Involvement of free radicals and reactive species in thyroid enlargement 

Several experimental data, as well as results of studies in humans, support the hypothesis 
that oxidative stress is involved in goitre formation. It is supposed that NO participates in vascular 
control during goitre formation. In animal model of thiouracil - and low iodine diet - induced goitre, the 
increased vascularization of the gland was accompanied by an induction of genes encoding for NOS 
I and NOS III; during goiter involution, the expression for these genes returned to basal values (37). 

In another study, low iodine diet resulted as expected in an increased thyroid weight, increased 
DNA and protein content, and increased ^H-thymidine incorporation into DNA of thyroid follicular 
cells; all those changes were reduced by an administration of an antioxidant - vitamin E (58). It is 
worth stressing that the changes in parameters of growth processes after vitamin E treatment were 
not accompanied by any changes in either TSH or thyroid hormone concentrations (58). These 
results suggest that vitamin E has a direct antigoitrogenic effect. 

Further studies, performed by the same group of authors, support the above suggestion. 
They have observed that vitamin E deficiency resulted in a significant increase in epithelial cell 
necrosis during goitre development and involution, and in inaeased lipid peroxidation and decreased 
GSH-Px activity in the thyroid (59). 

Studies in humans suggest that iodine deficiency is associated with an increased oxidative 
stress and decreased antioxidative defence. A decreased SOD activity was observed in endemic 
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goiter tissue (45). In iodine-deficient children with goitre, the activities of antioxidative enzymes 
(GSH-Px, CAT and SOD) in erythrocytes, and selenium concentration in plasma and erythrocytes, 
have been found to be significantly lower than their respective values in non-goiter and non iodine-
deficient control subjects, and even, what is most important, than in non-goiter but iodine-deficient 
children (60). Thus, it seems plausible that low activities of antioxidant enzymes and low selenium 
concentrations contribute to thyroid enlargement in iodine-deficient subjects. 

In another study increased damage to genomic DNA (evaluated by the measurement of the 
concentration of different oxidized bases in peripheral blood) was found in children (aged 15-8 years) 
with goitre, living in the area of severe or moderate iodine deficiency; DNA damage was accompanied 
by decreased blood concentration of thyroid free hormones, decreased concentration of selenium. 

Fig. 1 The proposed mechanism - related to oxidative 
stress - of thyroid enlargement (goitrogeaesis). H^Oj, 
hydrogen peroxide; NO', nitric oxide; OH, hydroxy! 
radical; ROS, reactive oxygen species; TSH, 
thyrotropin 
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decreased activity of GSH-Px and SOD in blood erythrocytes, and by decreased ioduria (61). The 
observation that iodine deficiency resulting in goitre, leads to oxidative DNA damage, supports the 
view on an essential relationship between iodine deficiency and the increased incidence of thyroid 
cancer. 

It has recently tjeen found that melatonin concentration, measured at night, was significantly 
higher after than before the operation performed in patients with very large non-toxic nodular goitre 
(62). These results, for some reasons - unexpected, could be explained as follows: melatonin might 
actively be taken up by an enlarged thyroid with a subsequent decrease in blood concentration of the 
indoleamine before surgery. 

The proposed mechanism - related to oxidative stress - of thyroid enlargement (goitrogenesis) 
is presented in Figure 1. 

Thyroid autoantigens and oxidative stress 

Thyroglobulin (Tg) and TPO belong to the main thyroid autoantigens. Thyroglobulin is stored 
extracellulary in the thyroid follicle lumen and is essential for thyroid hormone biosynthesis. 
During thyroid hormone synthesis, resulting from several oxidative reactions, the multimerized inactive 
form of Tg (mTg) is formed (63). It has recently been found that experimentally-induced oxidative 
stress participates in mTg fragmentation, producing Tg molecules with a recovered ability to store 
thyroid hormones; at the same time, the fragmentation of mTg precludes its excessive accumulation 
in the thyroid and, consequently the thyroid enlargement (63). 

Under experimental conditions of Fenton reaction or in the presence of ferric ions (Fe^*) -
both causing oxidative stress - a production of immunoreactive C-terminal fragments (40 kDa) of Tg 
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was observed and that process was accompanied by thyroid hormone synthesis (64). Using human 
thyroid cells, H^O^-^eing in excess - was shown to produce the same 40 kDa immunoreactive 
fragments of Tg; it is worth stressing that both H^O^ and iodide have been indispensable to cause Tg 
fragmentation (65), what suggests that Tg cleavage occurs during thyroid hormone synthesis. Of 
great importance is the fact that immunoreactive Tg fragments have been found only in dead cells 
but not in living ones and that those fragments are able to enter living thyrocytes (65), what would 
start autoimmune response. 

Concerning another thyroid autoantigen - TPO - worth mentioning are studies on oxidative 
stress and myeloperoxidase (MPO), w4iich is very similar in structure and properties to TPO. Whole 
body ionizing radiation (800 cGy) resulted in a decreased level of glutathione, increased levels of 
lipid peroxidation products and increased levels of MPO (as the index of neutrophil infiltration) in 
different tissues, the changes which were reduced by a co-administration of melatonin (66). It is 
highly probable that melatonin is also able to modify the level of TPO protein under conditions of 
excessive oxidative stress. No studies have till now been performed, showing that oxidative stress 
is involved in autoimmunity directed against TPO. Some other results are worth mentioning, 
concerning the relationship between oxidative stress and thyroid autoimmunity. 

It has been documented that free radicals are involved in interleukin - ip-induced 
glycosaminoglycan production by retro-ocular fibroblasts and their accumulation in patients with. 
Graves' disease (67). Furthermore, it has been shown that NO' is involved in interleukin - 1a -
induced cytotoxicity in polarized human thyrocytes, suggesting that this free radical may promote 
the exposure of autoantigens to the immune system (68). 

The relationship between oxidative stress and thyroid autoimmunity suggests a potential 
protective role of antioxidants in autoimmunological diseases. However, the application of antioxidants 
in patients with autoimmunological diseases or patients, predisposed genetically to these disorders, 
is still the point of discussion. As far as the influence of melatonin on the immune system is 
concerned, divergent results exist (69,70). However, the precise effect, caused by the indoleamine 
in patients with autoimmunological diseases, as well as the potential indications and contraindications 
for the treatment with this substance in such patients remain to be determined. 

Effects of thyroid hormones on oxidative processes 

Thyroid hormones regulate energy metabolism, among others, by their effects on 
mitochondria (71), in which free radicals and ROS are produced. Under in vitro conditions, thyroid 
hormones may act as antioxidants; thyroid hormones [3,5,3'-triiodothyronine, T^ and 3,5,3',5'-
tetraiodothyronine (thyroxine), TJ and their structural analogues (L-thyronine, T^; 3,5,3'-
triiodothyroacetic acid, TA^; 3,5,3',5'-tetraiodothyroacetic acid, TA )̂ were found to reveal antioxidative 
properties (72-74). For example, using different models of oxidative stress, it was shown that all the 
above mentioned hormones or their analogues revealed a capacity to scavenge free radicals, OH 
and O2" included (shown for T3), and that Tg, T3, and TA3 effectively prevented the formation of lipid 
peroxidation products - conjugated dienes and thiobarbituric acid reactive substances - during LDL 
oxidation (74). It was documented in the same study that the 4'-hydroxydiphenylether structure of 
thyroid compounds was necessary for their free radical scavenging activity. 
This has been confirmed by antioxidant effects of Tg, which has the basic 
structure of thyroid hormones but does not possess iodine atom; conversely, monoiodotyrosine 
(MIT), which possesses the mono-iodosubstituted phenolic ring of T3, does not reveal any antioxidative 
effects (74). 
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Effects of thyroid hormone excess 

Changes in the values of oxidative parameters in different tissues were observed, due to 
thyroid hormone excess resulting from either thyroid diseases or treatment w îth thyroid hormones. 
In blood samples, collected from hyperthyroid patients suffering from Graves' disease, the levels of 
thiobarbituric acid-reacting substances and conjugated dienes (both being parameters of oxidative 
stress), and the activities of main antioxidative enzymes (SOD, CAT and GSH-Px) were significantly 
higher than those in healthy subjects: all those changes were - to a differential degree - restored in 
result of antithyroid drug treatment (75). 

Similarly a significant increase in malondialdehyde (MDA) concentration and a slight inaease 
in Schiff s bases and conjugated dienes concentration (all tteing parameters of oxidative damage to 
lipids) were found in blood serum collected from hyperthyroid patients with Graves' disease; treatment 
writh methimazole (an antithyroid dnjg>brought about a decrease in the values of indices of oxidative 
stress, accompanied by normalization of thyroid hormone and TSH concentration (76). 

In mononuclear celJs, colJected from hyp&rthyroid patients with Graves' disease, an increased 
level of 8-oxo-7,8-dihydro-2'-<ieoxyguanosine (8-oxo-dGuo) (the parameter of DNA oxidative damage) 
was found; additionally 8-oxo-dGuo level correlated significantly with free T^ concentration (77). It is 
presumed that untreated hyperthyroidism contributes to oxidative damage to DNA. 

An induction of oxidative stress was also observed in experimental models of hyperthyroidism. 
The treatment of rats with thyroid hormones caused a production of O "̂ and Ĥ O^ in liver mitochondria 
(78) and of NO* in liver cytosol (79). Expectedly Tj-injection increased lipid peroxidation and protein 
oxidation in rat liver; it is worth stressing that the damage to lipids preceded the damage to protein 
moleculesin response to thyroid hormone, what suggests different susceptibility of target molecules 
to excessive amounts of thyroid hormones (80). 

In animal models of hyper- and hypothyroidism, Tj- treatment in rats brought about a 
significant increase in lipid peroxidation in the liver, the heart, and siceletal muscles, whereas 
methimazole administration (causing hypothyroidism) did not influence the level of lipid peroxidation 
products in those organs; at the same time, a decrease in the whole antioxidant capacity of tissues 
and an increase in GSH-Px and glutathione reductase (GSH-Rd) were observed in only some 
examined organs in trath hyper- and hypothyroid rats (81). 

In other animal models of hyper- and hypothyroidism, L-T^ treatment in OF/female mice 
resulted in an increased sensitivity to lipid peroxidation, an increased level of oxidized GSH (GSSG), 
and an increased ratio GSSG/GSH, as well as increased oxidative damage to mitochondrial DNA in 
the heart; interestingly a treatment with an antithyroid dmg - propylthiouracil (PTU) - did not influence 
oxidative damage to lipids and decreased GSSG concentration and the GSSG/GSH ratio, as well 
as reduced oxidative damage to mitochondrial DNA (82). The latter finding is of great importance, 
suggesting protective effects of PTU against oxidative stress. In agreement with this, L-T ,̂ but not 
PTU, treatment in OF/female mice increased lipid peroxidation in the skeletal muscle (83). 

In the study, performed at our laboratory, a 2-week-treatment with L-T^ 
(100 jig/kg B.W., for 14 days) resulted in an increased concentration of free fractions of both thyroid 
hormones; interestingly, a co-treatment with melatonin (5 mg/kg B.W., for 7 days) completely 
prevented the increase in free TjConcentration (84). Thus, melatonin has abolished the increase in 
the concentration of this thyroid hormone, which is directly responsible for tissue effects of 
hyperthyroidism. At the same time, it was observed that melatonin injection resulted in decreased 
basal values of conjugated dienes and Schiff s bases in rat kidney (84). It has recently been found 
that Tj causes mutagenic action through induction of oxidative stress (85). 
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Effects of thyroid hormone deficiency 

It has been observed that hypothyroidism, resulting from either PTU-treatment or 
thyroidectomy, causes a decrease in Ĥ O^ generation (86). Additionally hypothyroidism resulted 
from thyroidectomy prevented post-ischemic lipid peroxidation in rat kidney (87). 

Thus, it is still unclear, if the above-mentioned protective effects of PTU against oxidative 
stress (82) are really related to direct antioxidant action of the drug or to hypothyroidism, or if they 
result from both mechanisms. Indeed, PTU has been shown to react directly w îth OH and, to a 
lesser extent, with O/, protecting against lipid peroxidation (88), and to prevent the formation of 
hypochlorous acid (another oxygen species) (89). 

On the other hand, however, it should be expected that hypothyroid status, which constitutes 
a pathological condition, leads, sooner or later, to oxidative damage of biological molecules, in 
agreement with the last assumption, progressive hypothyroidism, observed early in postnatal rats, 
enhanced oxidative processes; increased SOD and CAT activities, and decreased GSH level were 
accompanied by an increased amount of OH, enhanced protein carbonylation and lipid peroxidation 
in rat brain (90). 

It is knovm that in aging humans, the function of several endocrine glands declines progressively 
resulting in decreased concentrations of different hormones, among others of melatonin and of 
thyroid hormones. The study performed in perimenopausal and menopausal women, with initial low 
levels of blood melatonin, revealed that melatonin treatment for 3-6 months resulted in a significant 
increase in thyroid hormone concentrations (91). Thus, melatonin reveals a recovery effect on thyroid 
function towards a more juvenile pattern of regulation (91); it is not excluded that the described 
effect is a direct one because a similar treatment with melatonin in aging patients did not result in 
any changes of TSH concentration (92). 

Radioiodine (̂ ^̂ 1) - induced oxidative stress 

Radioiodine(^^M) therapy is a treatment of choice in differentiated thyroid cancer (after total 
thyroidectomy) and in hyperthyroidism. In one of the studies, the parameters of oxidative stress were 
evaluated in patients subjected to total thyroidectomy because of thyroid carcinoma, before (at that 
time patients were hypothyroid) and after ^̂M treatment (93). The level of lipid peroxidation products, 
measured in blood erythrocytes, significantly increased after thyroidectomy comparing to values in 
the controls; a further increase in lipid peroxidation was found after " ' I treatment. Whereas GSH level 
and GSH-Px and GSH-Rd activities were lower in thyroidectomized patients than those in the control 
subjects, the values of those parameters significantly increased after ^̂M treatment. 

In another study a treatment with ' ^ 1 , using either higher (in case of thyroid cancer) or 
lower (in case of hyperthyrodism) activities, resulted in increased levels of isoprostanes (products 
of oxidative injury to lipids) in blood plasma, serum and urine; the damaging effect of " ' I was 
significantly higher and longer lasting after higher-activity therapy (94). The above findings are in 
agreement with other numerous data, indicating that radiation causes oxidative damage to tissues, 
while antioxidants, like melatonin, may prevent it (8). Because of the potential role of ionizing 
radiation in the pathogenesis of thyroid cancer, the studies on protective effects of melatonin against 
radiation-induced oxidative stress and thyroid cancer seem to be of special value. It is worth mentioning 
here that melatonin effectively reduced histoenzymological changes in the rat thyroid gland caused 
by exposure to y-radiation (95). 

Summing up, oxidative stress plays a significant role in the thyroid gland under both 
physiological and pathological conditions. Melatonin, as an antioxidant and widely distributed 
molecule, may constitute a modulator of physiological processes in the thyroid, and under pathological 
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conditions may protect against oxidative damage in the gland and in other tissues. This assumption 
requires further experimental evidence. 
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