Best Approximation of Functions of Zygmund Class by Matrix-euler (Δ·E1) Means of Fourier Series


  • Banaras Hindu University, Department of Mathematics, Faculty of Science, Varanasi, 221005, India


In this paper, best approximation of a function f belonging to Zygmund class, Zα, (0 < α ≤ 1) by Matrix-Euler (Δ·E1) means of its Fourier Series has been determined.


Best Approximation, Fourier Series, E1 Means, Matrix Summability Means and (Δ·E1) Summability Means, Zygmund Class.

Subject Discipline

Mathematical Sciences

Full Text:


G. Alexxits, Uber die Aannaherung einr stetigen Function durh die Cesaroechen Mittel in hrer Fourier-reihe, Math. Anal. 100 (1928), 264–277.

G. H. Hardy, Divergent Series, First Edition, Oxford University Press, Oxford, 1949.

S. N. Bernstein, On the best approximation of continuous functions by polynomials of given degree, in: Collected Works [in Russian], Vol. 1, Izd. Akad. Nauk SSSR, Moscow (1952), 11–104.

Xhevat Z. Krasniqi, On |(N, p, q)(E, 1)|k summability of orthogonal series, Acta Universitatis Apulensis, 29(2012), 187–195.

S. Pr¨ossdorff, Zur konvergenzder Fourier reihen H¨older steliger funktionen, Math. Nachr. 69(1975), 7–14.

E. C. Titchmarsh, The Theory of functions, Second Edition, Oxford University Press, Oxford, 1939, p. 403.

T¨oeplitz, O. Uber allgemeine Lineare Mittelbuildungen, Press Mathematyezno Fizyezne, 22 (1911), 113–119.

A. Zygmund,Trigonometric Series, 2nd rev.ed., I, Cambridge Univ. Press, Cambridge, 51(1968).


  • There are currently no refbacks.