Convolution on a Certain Class of Harmonic Univalent Functions


  • C.S.J.M. University, Department of Mathematics, Kanpur, 208 024, India
  • Indian Institute of Technology, Department of Mathematics, Roorkee, India


The purpose of the present paper is to establish certain results concerning on the generalized convolutions of functions in the classes HS(α) and HC(α).


Harmonic, Univalent, Convolution.

Subject Discipline

Mathematical Sciences

Full Text:


O. P. Ahuja, Planar harmonic univalent and related mappings, J. Inequal. Pure Appl. Math., 6(4) (2005), Art. 122, 1–18.

K. Al-Shaqsi and M. Darus, Application of H¨older inequality in generalised convolutions for harmonic functions, Far East J. Math. Sci., 25(2) (2007), 325–334.

Y. Avci and E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae CurieSklodowska Sect., A 44 (1990), 1–7.

J. H. Choi, Y. C. Kim and S. Owa, Generalizations of Hadamard products of functions with negative coefficients, J. Math. Anal. Appl., 199 (1996), 495–501.

J. Clunie and T Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fen. Series A. I. Math., 9 (1984), 3–25.

H. E. Darwish, On generalizations of Hadamard products of functions with negative coefficients, Proc. Pak. Acad. Sci., 43 (4) (2006), 269–273.

H. E. Darwish and M. K. Aouf, Generalizations of modified-Hadamard products of p-valent functions with negative coefficients, Math. Comput. Modell., 49 (2009), 38–45.

K. K. Dixit and Saurabh Porwal, On a subclass of harmonic univalent functions, J. Inequal. Pure Appl. Math., 10(1) (2009), Art. 27, 1–18.

T. Domokos, On a subclass of certain starlike functions with negative coefficients, Studia Univ. Babes-Bolyai Math., (1999), 29–36.

P.L. Duren, Univalent Functions, Grundleherem der Mathematischen Wissenchaften 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.

P. Duren, Harmonic mappings in the plane, Camb. Univ. Press, Cambridge 2004.

J. Nishiwaki and S. Owa, An application of H¨older’s inequality for convolutions, J. Inequal. Pure Appl. Math., 10 (4) (2009), Art. 98, 1–14.

J. Nishiwaki, S. Owa and H. M. Srivastava, Convolution and H¨older type inequalities for a certain class of analytic functions, Math. Inequal. Appl., 11 (2008), 717–727.

S. Owa, The Quasi-Hadamard products of certain analytic functions, in: H.M. Srivastava, S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, Hong Kong, (1992), 234–251.

M. Ozt¨urk and S. Yalcin, ¨ On univalent harmonic functions, J. Inequal. Pure Appl. Math., 3 (4) (2002), Art. 61, 1–8.

S. Ponnusamy and A. Rasila, Planar harmonic mappings, Mathematics Newsletters, 17 (2) (2007), 40–57.

S. Ponnusamy and A. Rasila, Planar harmonic and quasi-conformal mappings, Mathematics Newsletters, 17 (3) (2007), 85–101.

Saurabh Porwal, Vinod Kumar and Poonam Dixit, A unified presentation of certain subclasses of harmonic univalent funtions, Far East J. Math. Sci., 47 (1) (2010), 23–32.

A. Schild and H. Silverman, Convolution of univalent functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska Sect., A 29 (1975), 99–107.

H. M. Srivastava, S. Owa and S. K. Chatterjea, A note on certain classes of starlike functions, Rend. Sem. Mat. Univ. Padova, 77 (1987), 115–124.


  • There are currently no refbacks.