Common Fixed Point Theorems for Occasionally Weakly Compatible Mappings Using Implicit Relation


Affiliations

  • R. H. Government Postgraduate College, Department of Mathematics, Kashipur, India
  • Government Degree College, Department of Mathematics, Uttarakhand, India

Abstract

In this paper, we prove unique common xed point theorems for occasionally weakly compatible mappings in probabilistic semi-metric spaces satisfying contractive conditions with an implicit relation.

Keywords

Probabilistic Semi-Metric Space, Occasionally Weakly Compatible Maps, Implicit Relation.

Subject Discipline

Mathematical Sciences

Full Text:

References

M. Aamri and D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. 270 (2002), 181 – 188.

M. A. Al- Thagafi and N. Shahzad, Generalized I-nonexpansive selfmaps and invariant approximations, Acta Math. Sinica 24(5) (2008), 867 – 876.

I. Altun and D. Turkoglu, Some fixed point theorems for weakly compatible mappings satisfying an implicit relation, Taiwanese J. Math. 13 (4) (2009), 1291 – 1304.

A. Bhatt, H. Chandra and D. R. Sahu, Common fixed point theorems for occasionally weakly compatible mappings under relaxed conditions, Nonlinear Analysis 73 (2010), 176 – 182.

H. Chandra and A. Bhatt, Fixed point theorems for occasionally weakly compatible maps in probabilistic semi-metric space, Int. J. Math. Anal. 3(12) (2009), 563 – 570.

G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci., 9 (1986), 771 – 779.

G. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric spaces, Far East J. Math. Sci. 4 (1996), 199 – 215.

G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (3) (1998), 227 – 238.

G. Jungck and B. E. Rhoades, Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory 7 (2006), 286 – 296.

G. Jungck and B. E. Rhoades, Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory 9 (2008), 383 – 384 (Erratum).

S. Kumar and B. D. Pant, A common fixed point theorem in probabilistic metric space using implicit relation, Filomat 22 (2) (2008), 43 – 52.

S. Kutukcu, D. Turkoglu and C. Yildiz, Some fixed point theorems for multivalued mappings in fuzzy Menger space, J. Fuzzy Math. 15 (2) (2007), 413 – 424.

K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 535 – 537.

D. Mihet, A generalization of a contraction principle in probabilistic metric spaces, Part II, Int. J. Math. Math. Sci. 2005 (5) (2005), 729 – 736.

S. N. Mishra, Common fixed points of compatible mappings in PM-spaces, Math. Japon. 36 (1991), 283 – 289.

B. D. Pant and S. Chauhan, Common fixed point theorems for semicompatible mappings using implicit relation, Int. J. Math. Anal. 3 (28) (2009), 1389 – 1398.

V. Popa, Fixed points for non-surjective expansion mappings satisfying an implicit relation, Bul. Stiint. Univ. Baia Mare Ser. B. Fasc. Mat.-Inform. 18 (2002), 105 – 108.

K. P. R. Sastry, G. A. Naidu, P. V. S. Prasad, V. M. Latha and S. S. A. Sastry, A critical look at fixed point theorems for occasionally weakly compatible maps in probabilistic semi-metric spaces, Int. J. Math. Anal. 4(27) (2010), 1341 – 1348.

B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313 – 334.

B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Elsevier, North Holland, New York, 1983.

V. M. Sehgal and A. T. Bharucha-Reid, Fixed point of contraction mappings on probabilistic metric spaces, Math. Systems Theory 6 (1972), 97 – 100.

B. Singh and S. Jain, A fixed point theorem in Menger space through weak compatibility, J. Math. Anal. Appl. 301 (2005), 439 – 448.

C. Vetro, Some fixed point theorems for occasionally weakly compatible mappings in probabilistic semi-metric spaces, Int. J. Modern Math. 4(3) (2009), 277 – 284.


Refbacks

  • There are currently no refbacks.