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This paper takes the characteristics of timing data from
Time-Lapse Electrical Resistivity Tomography monitor as
basis, introduces the Kalman filter technique for a recursive
process on the natural electric field data of monitor samples
to achieve the timing inversion on monitor data. The
dynamic surveillance can be carried out on how the spatial
and temporal changes, such as groundwater movement law,
water inrush prediction, quarry and mining surveillance.
Time-lapse surveillance in a small area of the seam roadway
on a short time scale has further proved that the Kalman
algorithm has good effect on the inversion process of monitor
data. The monitor data inversion interpretation in the
natural electric field characterizes the variation of the
electrical properties of the floor before and after grouting.
The internal correlation between water movement and
grouting change is thereby built up. These features
attributes TL- Early to playing a good effect in the early-
warning of floor water inrush.

Keywords: Time-shift resistivity tomography, Kalman
filter technique, dynamic monitor.

1. Introduction

Today, the deep exploitation in our coal mines gets more
widespread, especially in some old mines in the east
of China, where they face the threat from a main type

of the floor limestone water disaster. To ensure the safe
backstopping of working faces, it is required to carry out the
grouting reinforcement on floor limestone water. We must
determine in advance whether there are some possible floor
cracks and the aqueducts, if so, the exact locations shall be
given for the borehole blockage.

Time-Lapse Electrical Resistivity Tomography (TL-ERT)
[1-10] incorporates the time-series data inversion whereby to
provide a direct observation on the dynamical variation in
subsurface electrical property and further know about the
subsurface-hydrogeological characteristics and how they
change. TL-ERT is widely used in the fields of the
hydrogeological permeability coefficient prediction
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(Hayleyetal.,2009; Kurasetal.,2009), salt water encroachment
(Martorana et al., 2014). As an optimal estimation technique,
Kalman is prevalent in the dynamic system parameter
estimation. Lehikoinen et al. (2009, 2010) implemented a
dynamic estimation on the geoelectric model parameters by
applying the Kalman algorithm [11-16] in the DC resistivity
monitor data process. The Kalman presents a good temporal
regularization effect when performing time-series data
inversion and model estimation. This paper explores the
application effect of TL-ERT with an experiment that Kalman
is introduced to process the monitor data on the natural
electric field and by taking the time-series inversion of
dynamic monitor data about grouting on working face 11605,
Daizhuang Coal Mine, Zibo Mining Group as the study case.

2. Geoelectricity model

2.1 DYNAMIC MODEL

In the process of grouting in the floor, the hydraulic layers
of the subfloor aquifer continuously change over time. The
continuous change model is monitored with the dynamic
model N̂  represented by the discrete model which
corresponds to all monitoring time points.

N = [N1... Ni...]
T ... 1

Where, Ni is the model corresponding to the time i.

In saturated porous media, the parameters such as
medium porosity , water saturation SW, and saturation
coefficientnare the constants. Archie formula, used for
calculating the conductivity of porous media, can be
simplified to be

   = b n
a w a wS k k s   ... 2

That is, the conductivity distribution of the medium
depends on that of the pore water. If the conductivity of the
pore water and the ion concentration are regarded as a
linearity (coefficient kc), formula (2) can be rewritten as

(S) = kakcS ... 3

It follows that the change of the hydraulic parameters of
the subfloor aquifer is equivalent to that of the conductivity
distribution of the whole system, and it is true for the dynamic
changes of the model statuses at the current time k and at



739JOURNAL OF MINES, METALS & FUELS

the previous time k–1 as follows

(S)k = Hk (S)k–1 + wk ... 4

Simplified as

Mk = HMk–1 + wk ... 5

Where H is the status evolution operator expressed by
Eqs. (2) and (3); Mk is the model status characterized by the
ion concentration; wk is the process noise caused by various
factors.

2.2 INVERSION ALGORITHM

The monitor data D̂  that the dynamic model corresponds
to is expressed as

D = [d1... di]
T ... 6

Where di is the monitor data corresponding to the time i.

Based on the conductivity distribution [observation data
in Eq. (6)], the current density of the streaming potential in
the porous medium can be available by forward computation,
that is,

Zk = FNk + vk ... 7

Where, Zk is the observation of the model Nk in current
time k; F is the status observation operator, and the model
space status is mapped into the observation data set. vk is
the observation noise.

The Kalman filter of dynamic process is built by the model
status process Eqs. (5) and observation model (7). The
filtering process can calculate the current status estimation
by using the status estimation of the previous time and the
current observation data, namely that the recursion process
undergoes two phases, i.e. “prediction” and “correction”. The
“prediction” phase can be expressed as

 NK|K–1 = H NK–1|K–1 ... 8

The “correction” phase can be expressed as

NK|K = NK|K–1 + KK (ZK – F NK|K–1) ... 9

In the process of the filter correction, the a posteriori
estimation status is derived from the a priori estimation status
plus the Kalman gain-weighted correction. This method can
transfer the previous observations to the current time in order
to increase the observational data volume. With the
continuous addition of observation data, the model status to
be solved can be constantly corrected and more approach to
the real model, so that a real-time inversion of time series
observation data are achieved.

3. Inversion test

3.1 HYDROGEOLOGICAL CONDITION

In the scope of this working face, the thickness of Shixia
limestone aquifers is 5.20m or so. The development of karst
fissures is uneven. The Shixia limestone L10-4 ground
observation conducted on August 25, 2009 shows that the

average water level elevation of the hole is about -64.637m
(the highest water level in the recent three year), q =
0.00157~0.1857 l/sm, K = 0.3551~5.1686 m/d, the salinity
1.9144~2.3885 g/l, and the water quality belongs to
SO4·HCO3–Ca·K+Na type, i.e. the moderate water-rich
aquifers with better conditions. This aquifer is a nether roof
of coal [16].

In work face 11605, there is a normal fault DF9 along the
elements of attitude: 76°, leaning to 166°, at a dipping angle
of 73°, with a fall of 0~5.0m.

In the face 11605, there are a row of non-polarized
electrodes, 85 in total, arranged on the coal seam floor at the
spacing of 10m; a measuring line is about 850m long. The
multi-channel electrical instrument measures up these
electrodes to monitor the change in the natural electric field
of floor.

3.2 PHYSICAL MEASUREMENT DATA

The algorithm is tested with actual measurements of the
natural electric field time-series data before and after floor
limestone water grunting on work face 11605 in order to
determine whether the physical model and the inversion
algorithm play a good effect. In the process of floor grouting,
the change in the natural electric field is monitored and
recorded. The electrodes are arranged at an interval of 10m
and the grouting bore is located in the middle part of the
roadway.

Monitor data at 10 o’clock every day will be taken as
sample data to draw the potential values measured for each
electrode, as shown in Fig.1 (a), (b), (c), (d), (e) and (f)
correspond to the curves of the natural electric field data
sampled as the function of certain times from D1 to D6,
respectively.

Along with the grunting, the electrode potential in the
strata near the borehole changes significantly, but a little in
the strata far away from the borehole. When sampling in Day
2, the natural potential value of electrode reaches the peak,
and then declines slowly, while remains stable on Day 5.

The time series inversion is carried out on the collected
natural electric field data. As shown in Fig.2 (a), (b), (c), (d),
(e) and (f) correspond to the results of the inversion at 10
a.m., Day 1, at 10 a.m. Day 2, and at 10 a.m. Day 6,
respectively. The inversion results from the monitor data of
the natural electric field of coal seam floor show that the
apparent resistivity in vertical direction changes significantly
in the wake of grouting. With gradually increasing of apparent
resistivity, the aqueous area gradually narrows, which
indicates that the effluent point of floor has been effectively
controlled. The observations roughly coincides with the
inversion results, which further suggests that the time-series
inversion can be effectively applied to the measured data of
the natural electric field so as to reconstruct the dynamic
process.
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Fig.1 Curve of the natural electric field monitor data in coal seam floor
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Fig.2 Monitor data inversion results in coal seam floor
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4. Conclusion

Based on the characteristics of timing data from Time-lapse
Electrical Resistivity Tomography monitor, the Kalman filter
technique is adopted to perform a recursive process on the
natural electric field data of monitor samples in order to
achieve timing inversion on monitor data. The dynamic
surveillance can be carried out on how the spatial and
temporal changes, such as groundwater movement law, water
inrush prediction, quarry and mining surveillance. Time-lapse
surveillance in a small area of the seam roadway on a short
time scale has further proved that the Kalman algorithm has
good effect on the inversion process of monitor data. The
monitor data inversion interpretation in the natural electric
field characterizes the variation of the electrical properties of
the floor before and after grouting. The internal correlation
between water movement and grouting change is thereby
built up. These features attributes TL- early to playing a good
effect in the early-warning of floor water inrush.
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