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For weak rock mass with notable rheological property,
instability is mostly caused by flowing deformation. As the
basis for the design of roadway supporting structure, the
rheological parameters of surrounding rocks are of great
importance. Unfortunately, the rheological parameters
obtained from indoor tests often fail to reflect the geological
defects in a large research area due to the impact from
constraints of sampling representativeness, sampling
disturbance and testing technical level. What is worse, field
tests are time-consuming, unrepeatable and costly. To solve
these problems, this paper conducts inversion of the
rheological parameters of surrounding rocks based on the
BP neural network. Taking a mine roadway as an example
and considering the vault subsidence data in the entrance
section, the author applies FLAC3D in numerical simulation,
adopts BP neural network for network learning and sample
training, and performs displacement inversion of the
rheological parameters of the surrounding rocks in the
section.
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1. Introduction

The research on rock rheological property could be
traced back to the 1930s. In 1939, Griggs [1] suggests
that creep deformation takes place when the load

reaches 12.5-80% of the failure load and employs the
logarithm empirical equation to describe the constitutive
relation of rock rheology on the basis of compression-creep
tests on sandstones, argillite and siltstones. In 1991,
Professor Chen Zongji [2] designs a torsional creep apparatus
to perform torsional creep test on sandstones in Yichang and
proposes a hypothesis regarding the origin and formation of
the “enclosed” stress. Besides, the professor examines the

release of internal strain energy, conducts 3D expansion to
the test equations proposed by Griggs, and takes material
parameters as the scalar functions of the stress invariant.

In 1991, Shi Yuchuan et al. [3] hold a field survey targeted
at the weak rock belt of dam abutment on the right bank of
Ertan hydropower station, build the H-K model, a rheological
model suitable for the weak rock mass in the following indoor
and field rheological tests, and determine the constitutive
equation of the weak rock mass based on the curves from the
field tests and the finite element inversion method. In 2000,
Zhou Huoming et al. [4] from Changjiang River Scientific
Research Institute of Changjiang Water Resources
Commission perform compression-creep tests on the rock
mass of the side slope of the permanent ship lock in the Three
Gorges Dam Project, make comprehensive analysis of the
creep test results on indoor soil mass and field rock mass,
and put forward the method for determining the value of rock
mass creep parameter through inversion of viscoelastic
displacement.

Since the emergence of the artificial neural network, [5-9]
the neural network, especially the back propagation neural
network (BP neural network), has been effectively employed
to solve non-linear problems and extensively applied in
various fields.  Being one of the most commonly used
networks, BP neural network [10] is a multilayer feedforward
network that minimizes the error sum of squares of the network
by using gradient descent method and back propagation to
adjust the weight and threshold of the network.

This paper, therefore, applies the BP neural network in
inversion of rheological parameters of surrounding rocks. The
application can effectively resolve the difficulties in
undermining the rheological parameters resulted from testing
conditions and external environment. Moreover, taking a mine
roadway as example and considering the vault subsidence
data in the entrance section, this paper applies FLAC3D in
numerical simulation, adopts BP neural network for network
learning and sample training, and performs displacement
inversion of the rheological parameters of the surrounding
rocks in the section.
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2. Establishment of the numerical calculation
model for roadway excavation

The process of soft rock roadway excavation and support is
undoubtedly related to the stress path because it is mainly
about the loading and unloading surrounding rocks. In this
sense, the reliability of inversion results hinges on the actual
simulation of the excavation and supporting process. Hence,
the author takes a mine roadway as example for modelling.

According to engineering geological mapping and drilling,
the rock mass in the roadway area is formed in the Yanshanian
period (r5

3). In the exposure zone, the formation lithology is
granodiorite (r5

3), lying below the alluvial soil layer of the
quaternary system. The surrounding rocks near the roadway
section are severely-to-medially weathered granodiorite. The
relatively hard rock has 3 groups of cracks distributed by
volume gap rate Jv=15 pieces/m3. There is trickling water at
the entrance and exit of the roadway with the [BQ] value
ranging from 251 to 350. The roadway is constructed by the
three-bench method as a guarantee of construction safety
and quality.

2.1 BOUNDARIES OF COMPUTATIONAL SIMULATION

According to Saint-Venant’s Principle, the influence from
excavation on surrounding rocks gradually disappears as the
excavation position moves farther away. The target area within
the boundaries of computational simulation should be
determined through comprehensive consideration of
computational efficiency and accuracy. After thorough
consideration of factors like the geology in the roadway
region, the target of computational simulation is determined
as the area within the following boundary lines: the left and
right lines are 75m away from the center point of the grotto,
the bottom line is 53m away from the point, the upper line is
the terrain surface, and the direction of roadway excavation
is 100m. In the model, the surrounding rocks and the first
lining are simulated with hexahedron block units and cable
bolt units. As shown in Fig.1, there are in total 347,400 units
and 361,479 nodes.

The steel arch centering is subjected to the equivalent
numerical simulation, that is, the effect of  steel arch centering
is converted to the effect of shotcrete. The goal is to improve
the rigidity and elasticity modulus of the shotcrete. The
roadway bolts are simulated with cable bolt units because the
bolts are mainly characterized by axial strength. Figs.1, 2 and
3 respectively illustrate the side view of the computational
model, the equivalent reinforced model of advanced small
pipe, and the cable bolt units of the first lining.

2.2 NUMERICAL SIMULATION OF THE CONSTRUCTION PROCESS

The roadway entrance is excavated by the three-bench
seven-step method for construction, which drives in 1m at a
time. Each bench is 5m-long and the core soil is 3m long.
Construction steps are as follows (Fig.4):

Fig.1 Side view of the computational model

Fig.2 Equivalent simulation model based on advanced small pipes

Fig.3 The cable bolt units of the first lining

The roadway is excavated in the following order: First, use
the steel frame set up in the previous cycle to lay a single
layer of advanced small pipes at a circumferential spacing of
0.4m within the 1a upper chamber, and inject slurry with water
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cement ratio of 1:1. The advanced small pipes are 5m long
each and the external angle of the vault is between 10° and
15°. Then, cut and excavate core soils 1c, 2c and 3c within
the range of 1m by the machine. After excavation of core soils,
excavate the upper bench 1a by 1m and set up the preliminary
supports, i.e. spray 4cm-thick shot concrete, rack the steel
arch centering and place the steel legs. Upon the completion
of bolting, keep spraying cement till it reaches the design
thickness of 28cm. Next, excavate the side wall of the medium
bench 2a 5m behind bench 1, spray 4cm of concrete, set up
the initial steel arch centering of the medium bench, and place
the steel legs. The side wall of the 2b bench should be
excavated by a certain distance behind the side wall of 2a.
The excavation of 3a and 3b should follow the same order as
that of 2a and 2b.

On this basis, the authors edit the FLAC3D roadway
excavation program. Fig.5 displays the sectional view at the
axle center of the roadway after excavation in the designed
range.

3. Parameters for inversion and range determination
3.1 SENSITIVITY ANALYSIS

Based on Nishihara model, this study takes the
degradation of surrounding rocks as the object of inversion

and carries out inversion of 8 parameters. Theoretically, all
parameters should be subjected to the inversion. However,
the scale of solution will increase with the number of
parameters for inversion, resulting in the “curse of
dimensionality” [11, 12]. The parameters for inversion are
normally selected by two principles: First, starting from the
design intent, grasp the main contradiction and reduce the
number of objects for inversion; second, select highly
sensitive parameters for inversion [13]. In reference to the
sensitivity analysis for system stability [14], this study
analyzes the sensitivity of objective functions against the
parameters for inversion, sieves out the parameters with huge
impact on objective functions, and thus completes the
selection of parameters for inversion. The values of
parameters having less sensitivity are determined by
experience.

The inversion is performed with surrounding rock
elasticity modulus, cohesive strength, angle of friction, Kelvin
shear modulus, Kelvin coefficient of viscosity and Maxwell
shear modulus. The intermediate values of the spans for
inversion parameters are collected into the benchmark
parameter set. In the analysis of sensitivity of volume
modulus b against vault subsidence u, for example, the
parameters other than density are fixed to their baseline
values. In this way, the authors obtain the relationship
between the density (independent variable) and vault
subsidence (dependent variable) as follows:

* * * * *
1 2 1( , ,..., ,..., ) ( )k k n k kU b b b b b bϕ+= = ... (1)

According to the equation above, authors draw the

system’s characteristic curve ( )kk bU ϕ− , which reflects the
sensitivity of vault subsidence U against parameter dk. Table
1 shows the numerical calculation results of the sensitivity
analysis.
3.2 UNIFORM DESIGN BASED SAMPLE STRUCTURE

The orthogonal design method is one of the most common
and effective approaches for experimental design. It picks the
representative points of orthogonality through
comprehensive tests [15]. Six factors are taken into account,
including surrounding rock elasticity modulus (bulk),
cohesive strength (coh), angle of friction (fric), Kelvin shear
modulus (EK), Kelvin coefficient of viscosity (ηK) and
Maxwell shear modulus (ηM). In the displacement inversion,
uniform design table U21 (216) (Table 2) is employed to divide
each parameter into 10 levels for 21 tests and for building the
learning samples and test samples of the neural network.

4. Inversion of surrounding rock parameters
with BP neural network

4.1 FEATURES OF BP NEURAL NETWORK

Artificial neural network is a complex network system
formed by entities and simple neurons connected with eachFig.5 The sectional view at the axle center

Fig.4 Construction procedures for the three-bench with
reserved core soil







154 MARCH 2017

layers at the minimum total error of the system is taken as the
number of nodes of the hidden layer for network training.
Through comparison, it is revealed that the total error of the
system was minimum when the number of nodes of the hidden
layer is n1 = 15.

During network training, the rationality of the value
selection of learning rate has a direct impact to the learning
speed, convergence performance and promotion capability. If
the learning rate is too slow, the training time will be greatly
lengthened and the convergence rate will be slowed down.
In contrast, if the learning rate is too fast, the error function
value will remain on a high level, leading to non-convergence
of algorithms. To ensure computational stability, the learning
rate of fixed learning rate algorithms should be as slow as
possible within the permission of the computation time. In
this paper, the learning rate is set as 0.01.
4.3 NETWORK TRAINING AND INVERSION OF RHEOLOGICAL

PARAMETERS OF THE SURROUNDING ROCKS

FLAC3D finite element software is adopted for numerical
simulation of parameters at different levels to obtain vault

TABLE 3: PARAMETRIC COMBINATION AND FLAC3D CALCULATED VAULT SUBSIDENCE VALUE OF THE TESTING PROGRAM

Bulk Coh fric EK ηK EM D2 D4 D6 D8 D10 D12
/GPa /MPa /° /GPa /GPa /GPa /mm /mm /mm /mm /mm /mm

.day

1 0.345 0.145 26.5 5.2 12.5 5.45 0.4196 0.8952 1.4112 1.9632 2.4872 2.9712

2 0.369 0.205 3 2 2.4 1 0 4.9 0.4222 0.9178 1.4718 2.0798 2.7298 3.3818

3 0.392 0.265 25.9 6.95 7.5 4.35 0.3562 0.798 1.3266 1.9166 2.4946 3.0106

4 0.416 0.325 31.4 4.15 5 3.8 0.4526 1.0252 1.7152 2.4832 3.2712 4.0172

5 0.439 0.385 25.4 1.35 13 3.25 0.3776 0.8428 1.3714 1.9656 2.6136 3.2616

6 0.463 0.13 30.9 5.9 10.5 2.7 0.3262 0.7034 1.176 1.714 2.278 2.79

7 0.486 0.19 24.8 3.1 8 2.15 0.3144 0.6632 1.0654 1.5314 2.0014 2.5254

8 0.533 0.31 24.3 4.85 13.5 1.05 0.2006 0.4424 0.761 1.1494 1.6384 2.2324

9 0.557 0.37 29.8 2.05 11 0.5 0.1428 0.4166 0.829 1.328 1.93 2.708

10 0.58 0.115 23.7 6.6 8.5 5.73 0.3744 0.8094 1.3064 1.8124 2.3004 2.7564

11 0.604 0.175 29.2 3.8 6 5.18 0.4626 1.0008 1.6018 2.2498 2.9038 3.5018

1 2 0.627 0.235 23.2 1 1 4 4.63 0.3466 0.7724 1.2488 1.767 2.301 2.841

1 3 0.651 0.295 28.7 5.55 11.5 4.08 0.3536 0.8166 1.3306 1.8886 2.4466 2.9666

1 4 0.674 0.355 22.6 2.75 9 3.53 0.418 0.9322 1.5322 2.2042 2.8962 3.5922

15 0.698 0.1 28.1 7.3 6.5 2.98 0.263 0.5692 0.9086 1.2906 1.6766 2.0266

1 6 0.721 0.16 22.1 4.5 14.5 2.43 0.2786 0.6408 1.0756 1.6076 2.2036 2.7776

17 0.745 0.22 27.6 1.7 12 1.88 0.4016 0.8878 1.4418 2.0858 2.7758 3.4858

1 8 0.768 0.28 21.5 6.25 9.5 1.33 0.2902 0.6244 1.0174 1.4574 1.9314 2.4614

19 0.792 0.34 27 3.45 7 0.775 0.2034 0.5058 0.878 1.344 1.91 2.566

2 0 0.815 0.4 32.5 8 1 5 6 0.3616 0.8134 1.287 1.745 2.171 2.513

TABLE 4: NETWORK TEST SAMPLES

Bulk Coh fric EK ηK EM D2 D4 D6 D8 D10 D12
/GPa /MPa /° /GPa /GPa /GPa /mm /mm /mm /mm /mm /mm

.day

1 0.51 0.25 30.3 7.65 5.5 1.6 0.305 0.7268 1.1908 1.7728 2.4558 3.2148

subsidence displacement of D2, D4, D6, D8, D10 and D12 with
different combinations of the parameters. In total, 20
parametric combinations are selected as input samples for
neural network training. The corresponding calculated vault
subsidence displacements are taken as the output samples of
network training (Table 3). The rest 1 parametric combination
and its calculated vault subsidence displacement are taken as
the sample for testing the performance of the training network
(Table 4).

There are 9 neurons on the input layer and 6 on the
output layer. According to the general design principles, the
input layer and the hidden layer are built with the hyperbolic
tangent activation function tansig; the activation function
between the hidden layer and the output layer is purelin; the
training function is trainbfg and the expected error is 0.01. In
Table 3, Columns 7-15 show the displacement data of the
parametric combinations and the displacement values
generated by FLAC3D; Columns 1-6 display the parametric
combinations for inversion, which are imported to the BP
neural network as training samples. Fig.8 records the errors
during the training of samples.
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The displacement data in Columns 7-5 in Table 3 are
imported to the network for simulation. The results are as
follows:

The simulation results are compared to the network test
samples in Columns 1-6. The mean error is 4.26%, which
basically meets the engineering requirements.

After network training, the actually measured data in
Table 6 are imported into the network for displacement
inversion. The resulting parameters of surrounding rocks are
shown in Table 7.

The above tests demonstrate that the BP neural network
can resolve the problems of long observation period and
unrepeatability if it is applied in inversion of the rheological
parameters of surrounding rocks.

5. Conclusions
For the purpose of resolving the difficulties in undermining
the rheological parameters resulted from testing conditions
and external environment, this paper conducts inversion of
the rheological parameters of surrounding rocks based on the
BP neural network. Taking a mine roadway as an example, the
authors rely on BP neural network to determine rheological
parameters of the roadway. In consideration of the vault
subsidence data in the entrance section, authors apply
FLAC3D in numerical simulation, adopts BP neural network
for network learning and sample training, and performs
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TABLE 5: OUTPUT OF NETWORK TEST SAMPLES

Output parameters Bulk/GPa Coh/MPa fric/° EK/GPa ηK/GPa EM/GPa.day

0.534 0.236 31.5 7.51 5.318 1.55

TABLE 6: ACTUALLY MEASURED LOCATION OF THE VAULT SUBSIDENCE

Time D2 D4 D6 D8 D10 D12

Vault 0.4 0.8 1.4 1.6 2.2 2.4
subsidence (mm)

TABLE 7: PARAMETER VALUES OBTAINED FROM INVERSION

Parameters Bulk/GPa Coh/MPa fric/° EK/GPa ηK/GPa EM/GPa.day

0.738 0.27 27.48 2.7 8.91 1.802

Fig.8 Error records in the network training process

displacement inversion of the rheological parameters of the
surrounding rocks in the section. It is proved by tests that
the back analysis is feasible and applicable in the
determination of the rheological parameters of the
surrounding rocks.
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