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Abstract
Ensuring high reliability and availability of draglines is imperative for the economic sustainability of a highly productive 
surface mining project. Draglines are very complex in design and consist of hundreds of components. Reliability modelling 
of a large complex system is difficult with conventional reliability analysis techniques. The dragging mechanism is a criti-
cal subsystem for the smooth operation of the draglines. This study uses the Bayesian Network (BN) model, mapped from 
the Fault Tree (FT), for the reliability analysis of Dragline. Sensitivity analysis identifies the critical components – help-
ful information for reliability management. The results demonstrate that three components of the dragging mechanism, 
namely, the drag motor system, drag brake and drag socket are primarily responsible for the poor reliability of the case 
study system. This study provides valuable information for maintenance planning of operating draglines and reliability 
blueprint of future dragline design.

1. Introduction
Draglines are popular equipment for high productive 
surface coal mines. The breakdown of draglines has a 
huge financial impact. Maintaining high reliability and 
availability is a challenge to mine management. Reliability 
is the probability that the system performs a specific 
function under the given conditions for the stated time 
intervals (Ebeling, 1997). System reliability has played a 
significant role in many fields to ensure the high quality, 
better performance of machines and safety assurance. 
System reliability analysis is critical in surface mines 
due to the deployment of many highly complex capital-

intensive Heavy Earth Moving Machinery (HEMM). 
Significant research on the reliability analysis of mining 
equipment is primarily based on the traditional statistical 
models (Barabady, 2005; Barabady and Kumar, 2008; 
Rahimdel et al., 2013; Samanta et al., 2004; Kumar et al., 
2020). Frequent failures, faults, and various malfunctions 
are common to mining equipment operations, and these 
events lead to substantial financial and production loss, 
sometimes leading to catastrophic failures. Minimizing 
these problems, maintenance personnel carried out the 
maintenance plan according to failures of the subsystems 
or components (Kumar et al., 2020, Gustafson et al., 
2015).
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network method. Cal et al. (2012, 2013) introduced the 
BNs models to evaluate the reliability of subsea blowout 
preventer control systems. The main reason for failure and 
imperfect coverage of redundant systems were observed in 
this work. Doguc and Ramirez-Marquez (2009) provide a 
BN-based methodology to estimate the system’s reliability 
using failure data. A Dynamic Bayesian network has been 
used to model renewable energy systems’ availability 
using the corrective repair time, logistic delay times, 
maintenance time and failure time (Neil and Marquez, 
2012). Codetta-Raiteri et al. (2012) presented the DBNs 
to study the cascading failure of critical infrastructure 
systems. 

The applications of BNs have faced some challenges 
in evaluating reliability analysis, fault diagnosis for the 
integration of different variables like both discrete and 
continuous variables and the problem of calculation 
efficiency of BNs for the complex system. Therefore, 
researchers have developed various methods like the 
discretisation method (Zwirglmaier and Straub, 2016), 
the dynamic discretisation method (Marquez et al., 
2010), the approximate inference method (Langseth et al., 
2009) and the max-flow min-cut theorem-based method 
(Bensi et al., 2013). In the present research, the BN is used 
for the reliability analysis of the dragging subsystem and 
its components of a dragline. For this study, operational 
data of a dragline and its subsystems were collected from 
a large surface coal mine situated in the central part of 
India. The data were analysed using the developed BN 
model. The structure of this paper is as follows: Section 2 
presents the methodology including a brief on the BN and 
FTA. Section 3 includes the case study. Section 4 shows 
the result and discussion including sensitivity analysis. 
Lastly, we conclude the paper in Section 5.

2. Model Development
BN is developed through mapping the systems’ FT, as 
discussed in the following section. 

2.1 Fault Tree Analysis
Fault Tree Analysis (FTA) is a reliability analysis 
technique developed by H. A. Watson at Bell laboratories 
in 1962 (Vaurio, 2002). FTA is a deductive analytical 
method that identifies the weak links in the system 
by progressing from the occurrence of an unwelcome 
event (top event) to unearth the root causes of that event 

Several conventional methods, primarily based on 
the statistical inference techniques, are used to determine 
the system’s reliability—for example, Fault Tree Analysis 
(FTA), Reliability Block Diagram (RBD), Event Tree 
Analysis (ETA), Markov and semi-Markov Chains, and 
Petri Nets (PN). Every method has its own advantages 
and disadvantages as well as applicability. The BN is 
an alternative technique to evaluate the reliability of 
complicated systems bedevilled by failure dependencies. 
The BN models have gained popularity in reliability 
analysis due to their ability to perform predictive and 
diagnostic analyses of large complex systems. In predictive 
analysis, root node probabilities are the prior probability 
for calculating the occurrence probability of any node. In 
the diagnostic study, the evidence/observations are used 
to compute the posterior probability of the given variables 
(Bobbio et al., 2001).

The bayesian networks have found their applications 
in reliability and dependability analysis of systems 
(Weber et al., 2010; Langseth et al., 2007), including 
uncertainty modelling (Khorshidi et al., 2016; Zhang et 
al., 2018), risk analysis (Zhang et al., 2018, Liu et al., 2018; 
Xie et al., 2021), safety analysis(Cai et al. 2016), resilience 
engineering (Cai et al., 2018) and fault diagnosis (Cai et 
al., 2017; Luo et al., 2018; Wang et al., 2018; Sahu and 
Palei, 2020; Sahu and Palei, 2022) of complex systems. 
Weber (Weber et al., 2010) and Cai (Cai et al., 2019) 
found that BNs are useful in reliability and risk analysis. 
Langseth and Portinale (Langseth and Portinale, 2005) 
also studied the BNs in reliability analysis and highlighted 
the properties of BNs comprehensively. Sigurdsson et al. 
(2001) have thoroughly reviewed the works on reliability 
analysis using BNs.

Reliability can be evaluated by converting the 
existing FT into the bayesian or Dynamic Bayesian 
Network (DBN) using the algorithm presented by 
Bobbio et al. (2006, 2008), Weber and Jouffe (2006) 
changed the complex dynamic models into equivalent 
markov chains using a dynamic object-oriented bayesian 
network. The probability propagation method was used 
for reliability estimation in which RBD was converted 
into a BN representation using a general methodology 
(Torres-Toledano and Sucar, 1998). Further, Kim (2011) 
presented the method for mapping an RBD to BN without 
loosing the single matching characteristic for quantitative 
analysis.

Recently, X. Li et al. (2021) estimated the reliability 
of warm spare gates using the discrete-time bayesian 
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(basic events) (Gupta and Bhattacharya, 2007). It’s a 
popular technique for both qualitative and quantitative 
evaluation. In the quantitative phase, all key components 
are given a probability of occurrence, and the value of the 
top event is calculated (Ramesh and Saravannan, 2011). 
The important logic gates used in FT to connect events 
are: AND gate — where all immediate lower level events 
must occur for its occurrence and OR gate, where at least 
one of the immediate lower level events must occur for 
the top event to occur (Goodman, 1988). Basic FTs with 
AND gate and OR gate are shown in Figure 1. 

During quantification of the FT, AND gates are 
treated as the intersection of all input event sets, and its 
probability may be computed using Equation (1). 
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n
ii

P P
=

=∏  (1)

If at least one of the input events occurs, the OR gate’s 
output occurs, and the probability is calculated using 
Equation (2).
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n
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2.2 BN Technique
Based on probabilistic and uncertain knowledge, BNs 
are used to build system reliability models. A Bayesian 
network is a Directed Acyclic Graph (DAG). BNs can 
be made up of qualitative or quantitative components or 
both. A BN comprises nodes and directed edges (edges 
for short). Edges show causal linkages between linked 
nodes, while nodes represent random variables. Parent 
nodes (the ones that an edge starts with) and child nodes 
(the ones that an edge points to) are the two types of 
node8 that develop the BN. An edge extending from A to 
B denotes that the value of the child node B is dependent 
on the value of the parent node A, or that A influences 

B, and that the strength of the impact is protected by 
the Conditional Probability Table (CPT) of node A 
(parent node) (Langseth and Portinale, 2005). Borunda 
et al. (2016) assign marginal probability distributions to 
root nodes that have no parent, whereas CPTs are set to 
intermediate nodes. Thus CPT can be determined by the 
relationships between variables and their corresponding 
states (Torres-Toledano and Sucar, 1998). 

The two typical information propagation procedures 
of BNs are top-down (predictive support reasoning) and 
bottom-up (diagnostic support reasoning) (Rebello et al., 
2018). The joint probability distribution P(X) propagates 
information in the top-down reasoning pattern following 
equation (3):
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However, The joint probability distribution P(X) of 
BN follow the conditional independence and chain rule. 
Thus, BNs represent P(X) of variables X = {X1, X2, X3,… … 
…Xn} included in the network as
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where, Pa(Xi) are the parents of Xi in the BN, and P(X) 
reflects the properties of the BN (Jensen, 2007).

The probability distribution of a given variable can be 
derived by marginalising the joint probability distribution 
about it. This is known as marginalisation and can be 
used to calculate system reliability (Weber et al., 2010, 
Langseth and Portinale, 2005). The bottom-up inference 
algorithm follows a junction tree or variable elimination, 
help to estimate the posterior probability distribution of 
a particular variable based on Bayes theorem and given 
the observation of another set of evidence (set E) (Adnan, 
2009). 
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Due to interdependencies between the failure 
causes and causal complexity of failures of the dragging 
subsystem, the standard BN approach was chosen over 
the widely used conventional techniques to estimate the 
subsystem’s reliability. Figure 2 shows the flow chart of the 
developed methodology for BN-based reliability analysis.

Figure 1. FTs with (a) AND Gate and (b) OR Gate.
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2.3 Mapping of FT into BN
Bobbio et al. (2001), stated that any FT has its corresponding 
BN. The basic events of the FT corresponds to the root 
nodes, the intermediate events are the intermediate nodes, 
and the top events are the leaf node or child node in the 
BN with each node having its CPT. For an example let A, 
B, and C are the random variables with two states: 0 and 
1 where 0 indicates that the event occur, and 1 indicates 
that event does not occur. The FT representation of A,B,C 
and its accompanying BN is appeared in Figures 3 and 4 
using OR and AND gate respectively. The CPT is shown 
in Table 1 for OR gate and Table 2 for AND gate. 

3. Case Study
The proposed model has been demonestrted through 
a case study. Reliability of the dragging subsystem of a 

dragline has been analysised with the help of developed 
BN model. 

3.1 Overview of The Case Study System
The data used in this study are operational field data 
collected from the maintenance log book of a dragline, 
deployed in a highly productive surface coal mining 
project in central India. Dragging mechanism is a critical 
subsystem of a dragline. It helps to operate the dragline 

Table 1. Conditional probability Table corresponding 
to OR gate.

Parents Top event(A)
P(A=X,Y)B C

0 0 0
1 0 0
0 1 0
1 1 1

Figure 3. Mapping of OR gate in FT into BN.

Figure 2. Flow chart of the developed methodology for 
BN-based reliability analysis.

Figure 4. Maping of AND gate in FT into BN.

Table 2. Conditional probability table corresponding 
to AND gate.

Parents Top event(A)
P(A=B,C)

B C
0 0 0
1 0 1
0 1 1
1 1 1
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efficiently and effectively. This study has used data of a 
dragline with the following specification: 

Bucket capacity: 24m3,

Boom length: 96m, 
Boom angle: 30°, 
Operating radius: 88m, and 

Figure 5. Schematic diagram of the dragging subsystem.

Figure 6. The FT diagram of the dragging subsystem of a dragline.



Reliability Analysis of Dragline Subsystem using Bayesian Network Approach

Journal of Mines, Metals and FuelsVol 70 (7) | July 2022 | http://www.informaticsjournals.com/index.php/jmmf346

Maximum suspended load: 77t. 
Drag mechanism mainly consists of a drag rope, 

motor, gearbox, brake, socket, drum, control system, 
pulley and chain. It has two motors which help to bind 
the drag rope on the drag drum with the help of gear box. 
The control sytem regulates the functions of these drag 
motors. The drag motors are attached to the gearbox. 
Drum speed is controlled with the help of a pinion gear 
arrangement and the brake. Drag rope is used to drag the 
overburden into the bucket. The socket connects the drag 
rope and the drag chain. All these components perform 
their defined function for smooth operation of the drag 
mechanism. Thus, high reliability of each component is 
essential for the higher reliability of the drag mechanism. 
Figure 5 presents a schematic diagram of the dragging 
subsystem with various interconnection between the 
components.

3.2  Development of the BN for the 
Dragging Subsystem

As discussed in section 2.1, the FT of the dragging 
subsystem of the case study dragline has been developed 
and presented in Figure 6. Developed FT has been 

Figure 7. Bayesian Network of the dragging subsystem mapped from fault tree. 

mapped to a BN as described in section 2.3 and presented 
in Figure 7. 

4. Result and Discussion

4.1 Analysis of the Data
Analysis of the field data shows that the failure frequency 
of the drag chain is maximum, followed by the motor. 
Figure 6 presents a pie chart of the failure frequency of all 
the components of the dragging subsystem. 

Figure 8. Failure frequency of different components of 
dragging subsystem.
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The statistical analysis of failure data comprises 
trend analysis, selecting the best-fit distribution, and 
calculating distribution parameters. The results of the 
trend and correlation test shows that the data follows 
iid and it is observed that the Weibull distribution is the 
best fit distribution for the components of the dragging 
subsystem (Table 3). The failure density function of the 
Weibull distribution is 

 
( ) ( )

1
/ç

ç ç
ttf t e

β
β

β
−

− 
=  
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where, β is the shape parameter, and η is the scale 
parameter.

The Weibull distribution parameters (β, η) of different 
components of the dragging subsystem are tabulated in 
Table 4.

4.2 Reliability Estimation
The failure probabilities of different components of 
the dragging subsystem have been evaluated from the 
distribution parameters given in Table 4 and used as the 
prior probabilities in BN model. The bayesian network 

Table 3. Best fit distribution for components of the dragging subsystem 

Components Exponential Weibull Lognormal Best-fit distribution 

Drag Rope
Loglikehood(max)  -448.2771 -436.8179 -442.9095 

Weibull distributionAIC(min) 898.5542 877.6357 889.8189 
BIC(min) 900.8446 882.2167 894.3998

Chain
Loglikehood(max) -97.12713 -93.83206 -95.66817 

WeibullAIC(min) 198.2543 191.6641 195.3363 
BIC(min) 199.2241 192.6339 196.3061

Pulley
Loglikehood(max) -40.82124 -40.33906 -40.39448 

WeibullAIC(min) 85.64249 84.67812 84.78896 
BIC(min) 84.86137 83.89699 84.00784

Socket
Loglikehood(max) -119.8885 -102.2423 -102.2625 

WeibullAIC(min) 243.7769 208.4845 208.5249 
BIC(min) 245.055 209.7626 209.803

Drum
Loglikehood(max) -58.63928 -55.20817 -55.91413 

WeibullAIC(min) 121.2786 114.4163 115.8283 
BIC(min) 121.1704 114.3082 115.7201

Gearbox
Loglikehood(max) -73.28532 -69.64592 -71.29547 

WeibullAIC(min) 150.5706 143.2918 146.5909 
BIC(min) 150.7295 143.4507 146.7498

Brake
Loglikehood(max) -91.6794 -87.44974 -89.01978 

WeibullAIC(min) 187.3588 178.8995 182.0396 
BIC(min) 188.1546 179.6953 182.8353

Motor
Loglikehood(max) -97.12713 -93.83206 -95.66817 

WeibullAIC(min) 198.2543 191.6641 195.3363 
BIC(min) 199.2241 192.6339 196.3061

Control System
Loglikehood(max) -55.74668 -54.26466 -54.47788 

WeibullAIC(min) 115.4934 112.5293 112.9558 
BIC(min) 115.0769 112.1128 112.5393

Power Failure
Loglikehood(max) -180.3845 -158.5522 -159.5287 

WeibullAIC(min) 364.7689 321.1044 323.0574
BIC(min) 366.858 323.1934 325.1465
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diagram of the dragging subsystem is mapped from the 
FT already shown in the Figure 7 whereas Figure 9 shows 
the reliability assessment of the subsystem.

It is observed that the reliability is estimated to be 
81.75% at 1h, 60.66% at 5h and 47.45% at 10h. Reliability 
of the dragging subsystem has been estimated at every 
5h intervals up to 100h and plotted in Figure 10. The 
reliability is only 5% at 100h of machine operation.

4.3 Failure Diagnosis
The failure diagnosis of the dragging mechanism using 
BN has been done by updating the network nodes’ failure 
probabilities, as appears in Figure 11. Here, the failure 
probability of the child node i.e. the dragging subsystem 
is set to 100% individually, and the node probabilities 
of the BN have been updated. Under this condition, it 
is observed that the drag motor system has the highest 

Table 4. Different components of the dragging mechniasm and their failure parameters 
Intermediate node Root node Abbreviation Parameters(β, η)

Dragging 
Mechanism

Drag ropeFailure X1 (0.8459544,751.4251942)

Drag chainFailure X2 (0.8558992, 433.3874504)

Drag PulleyFailure X3 (0.6272825, 574.7544588)

Drag SocketFailure X4 (0.5766803, 589.4482878)

DrumFailure X5 (0.9205495, 920.5721644)

Gear BoxFailure X6 (0.7733964, 2076.3137742)

Drag BrakeFailure X7 (0.5239005, 866.9491335)

Motor system 
Failure(IE1)

Control System Failure X8 (1.064601, 3199.956666)

Drag Motor 1 Failure X9 (0.5273567, 427.7129938)

Drag Motor 2 Failure X10 (0.5273567, 427.7129938)

Power Failure X11 (0.4800574, 1212.5756900)

Figure 9. Reliability assessment of the dragline system
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Figure 11. Updated BN of the dragging mechanism with 100% failure.

failure probability of 59.60%. Further, the drag motors 
of the motor system have the highest failure probability 
of 21.99%, followed by the power failure with a failure 
probability of 17.83%, and the drag brake with a failure 
probability of 15.60%. 

The posterior probabilities of all the components of 
the dragging subsystem under this conditions has been 
shown in the Table 4. This table also demonstrates the 
changes in probabilities from prior to posterior during 
the model update.

Figure 10. Reliability curve of the dragging mechanism.
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4.4 Sensitivity Analysis
Relative importance of the parent nodes is important for 
reliability improvement and devising countermeasures for 
failures. Sensitivity analysis, based on information theory, 
may be performed for the importance ranking of variables 
in BN. Mutual Information (MI) values between pairs of 
random variables can reveal the degree of dependency 
between two random variables. This approach states that 

the state of one node provides a lot of information about 
the state of another node if they are connected (Chen et 
al., 2008).

MI between two random variables X and Y is denoted 
by I(X;Y), and mathematically defined as (Naidoo and 
Naidoo, 2021):

 ( ) ( ); ( | )I X Y H X H X Y= −  (7)

where, H(X) and H(Y) represent the entropies of random 
variables X and Y, respectively, and H(X|Y) represents 
the conditional entropy of random variable X given Y. 
The entropy and conditional entropy are mathematically 
defined as follows:
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where, n and m represent the number of discrete states 
represented by the random variables X and Y; and P(X = xi, 
Y = yi)  represents the joint probability distribution of the 
X and Y.

Using these MI approach the sensitivity analysis 
for the present study has been carried out. The mutual 

Table 4. Prior and Posterior probability of the 
components of the dragging mechanism

Nodes
Prior 
Probability

Posterior 
Probability

Drag rope(X1) 0.9963 0.9798
Drag Chain(X2) 0.9945 0.9698
Drag Pulley(X3) 0.9816 0.8992
Drag SocketX(4) 0.9751 0.8642
Drag drum(X5) 0.9981 0.9898
Drag Gearbox(X6) 0.9973 0.9851
Drag Brake(X7) 0.9715 0.8441
Control System Failure(X8) 0.9998 0.999
Drag Motor1(X9) 0.9599 0.7801
Drag Motor2(X10) 0.9599 0.7801
Power Failure(X11) 0.9675 0.8217
Drag motor system(IE1) 0.8912 0.4040

Figure 12. Importance ranking of components of dragging subsystem
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information values for different components of dragging 
subsystems has been plotted in Figure 12.

It is observed that the MI value between the drag motor 
subsystem and overall dragging subsystem is estimated to 
be 0.3185. From this information, it can be said that the 
failure of drag motor subsystem (IE1) is the most critical 
in the dragging subsystem failure, contributing about 
31.85% of the overall failure. Similarly drag motor1 (X9) 
and drag motor2 (X10), each contributes 10.42% of failure 
of dragging subsystem. The results of sensitivity analysis 
reveal that the drag motors are the most important 
component in the dragging subsystem. 

To improve the reliability of the dragline, it is necessary 
to improve the reliability of the dragging mechanism. 
Thus, the quality enhancement of dragline depends on 
the reliability improvement of the components of the 
dragging subsystem. Therefore, it should be highlighted 
in the maintenance policy of the dragline. 

5. Summary and Conclusion
This study proposed the BN model for the reliability 
analysis of the dragging subsystem of a dragline. 
Reliability, failure probability, and failue diagnosis of the 
subsystems through the BN model have been studied. 
The drag motors were identified as the most failure-prone 
component, having a failure probability of 4.01% within 
an hour of operation, followed by power failure (3.25%), 
drag brake (2.85%), drag socket (2.48%) and drag pulley 
(1.84%). The reliability of the dragging subsystem was 
81.75% during the 1h and 0.05% during the 100h of the 
machine operation.

Failure diagnosis of the subsystem revealed that the 
drag motor, power failure, and drag brake are the three 
main contributors to overall dragging subsystem failure. 
For improving the realibility and performance of the 
overall dragline system, preventive measures should be 
taken for the identified critical components of the dragging 
subsystem. Also, different maintenance strategies can be 
developed for the said subsystem/components according 
to their failure probability and criticality.
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