
Abstract
This article carries out the temperature-dependent study of the band structures of bulk binaries such as AlAs, GaAs, InAs, and 
InP grown on different substrates thus showing the combined effect of substrate and temperature on the bandgaps of the 
binary systems under study. For the calculations of the band structures of the binary systems grown on different substrates, 
the k.p technique has been used. The results have been analyzed successfully. For all the binaries, it has been found that 
the bandgap is reduced with increasing temperature but the rate of reduction with temperature is different for dissimilar 
substrates. The outcomes of the calculations for the band structures of binaries grown on lattice-matched and unmatched 
substrates are very useful for understanding of device performance.  

*Author for correspondence

1.0  Introduction
From photonics and energy harvesting to electronics 
and many other technical uses, tuning the bandgap of 
materials is essential1-3. The energy range between a 
material’s valence and conduction bands, or bandgap, 
controls both its electrical and optical characteristics. 
Engineers and scientists may tailor the behavior of 
materials to meet certain requirements by adjusting the 
bandgap4-7. Bandgap engineering, for instance, enables 
the development of transistors with changing energy gaps 
in the field of semiconductor electronics, simplifying the 
construction of devices that can function well at various 
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wavelengths and energy levels. This is especially important 
for creating sophisticated integrated circuits, sensors, and 
optoelectronic gadgets that meet the requirements of 
contemporary technology.

The efficiency of solar cells and other energy 
conversion technologies may also be optimized by 
bandgap adjustment8,9. Researchers can optimize the 
absorption and utilization of incoming photons, leading 
to higher energy conversion efficiencies, by adjusting the 
bandgap to match the solar spectrum or other pertinent 
energy sources. This is especially useful for utilizing 
renewable energy sources like solar and thermoelectric 
power as well as for developing technologies like Light-
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Emitting Diodes (LEDs) and lasers, where the emission 
and absorption characteristics are closely related to the 
bandgap of the materials involved10,11. Fundamentally, 
manipulating the bandgap of materials enables scientists 
and engineers to open up new avenues for improving 
the functionality of devices, energy effectiveness, and 
technological innovation in general.

In this article, authors have taken into account the 
variable temperature considering the different substrates 
to study the effect of temperature and the substrates 
simultaneously on the band structures and band gaps of 
some technologically important binary materials such as 
AlAs, GaAs, InAs, and InP. The effect has been analyzed in 
brief.  Such a study may be very useful in understanding 
the tunability of the band gaps of the concerned materials 
for the purposes of designing tunable devices. 

2.0 Theoretical Background 
In order to examine the substrate effects on the band 
structures of III-V semiconducting materials, particularly 
GaAs, InAs, AlAs, and InP binaries, a k.p method leading 
to fundamental quantum mechanics can be very helpful. 
The  k.p  model can be derived from the one-electron 
general Schrodinger equation. Using the Bloch theorem 
(theorem for moving particles in periodic potential or 
crystalline solids) the solutions of the general Schrodinger 
equation can be expressed, in the reduced zone scheme, 
as follows:     

where  n  is the band index,  k  lies within the first 
Brillouin zone, and unk has the periodicity of the lattice. 
When  Φnk  is substituted into the general Schrodinger 
equation, one can obtain an equation in unk of the form:

The above equation is referred as k.p model for 
calculating the energies of different bands. 

Further, the calculations for studying the temperature 
dependant bandgap tuning may be 

performed using the following expression:

The above relationship between band gap energy and 
temperature is called Varshni’s empirical expression12.  

3.0 � Simulation Results and their 
Analysis 

Initially, considering the effective mass approximations, 
a 6 × 6 K-L (Kohn-Luttinger) Hamiltonian is solved to 
find out the energy band structure of the desired bulk 
materials. The 6 × 6 K-L Hamiltonian typically consists 
of several terms, including the kinetic energy of the 
electrons, the electron-electron Coulomb interaction, and 
the electron-phonon interaction13,14. The specific form of 
the Hamiltonian depends on the level of approximation 
being used and the details of the system being studied. 
Solving the K-L Hamiltonian involves finding the 
quantum mechanical states and energies of the electrons 
within the given solid. This is a complex task that often 
requires approximation methods due to the large number 
of particles involved and the interactions between  
them.

In order to study the effect of temperature on the 
bandgap, Varshni’s empirical expression has been utilized 
and the corresponding changes in the bandgap have been 
displayed in Figures 1-8. Generally, with increasing the 
temperature, the bandgap of all the binaries is reduced, as 
expected. In Figures 1 (a), (b), and (c), the temperature-
dependent bandgap of the AlAs binary assumed to be 
grown on AlAs, GaAs, and InAs substrates have been 
shown. Considering AlAs and GaAs substrates, the 
bandgap is reduced from 3.10 eV to 2.92 eV on increasing 
the temperature from 150K to 400K (Figures 1 (a) and 
(b)); while with the InAs substrate the bandgap is reduced 
from 1.92 to 1.76 eV on increasing the temperature from 
150K to 400K (Figure 1 (c)). The bandgap reduction 
of AlAs bulk material with different substrates on 
increasing the temperature has been summarized in  
Figure 2. 

Refer to Figures 3 ((a), (b), and (c)) in which the 
temperature-dependent bandgap of GaAs binary 
supposed to be grown on AlAs, GaAs, and InAs substrates 
have been shown. For AlAs and GaAs substrates, the 
bandgap of GaAs is reduced from ~1.48 eV to ~1.36 eV on 
increasing the temperature from 150K to 400K (Figures 3 
(a) and (b)); while with the InAs substrate, the bandgap 

https://en.wikipedia.org/wiki/Y._P._Varshni


Temperature Dependant Bandgap Tuning of GaAs, AlAs, InAs, and InP Binaries Grown on different Substrates

Vol 71 (10) | October 2023 | http://www.informaticsjournals.com/index.php/jmmf � Journal of Mines, Metals and Fuels1396

150 200 250 300 350 400
2.92
2.94
2.96
2.98
3.00
3.02
3.04
3.06
3.08
3.10

Ba
nd

ga
p 

(e
V)

Temperature (K)

AlAs on AlAs substrate

150 200 250 300 350 400

2.94

2.96

2.98

3.00

3.02

3.04

3.06

3.08

3.10

Ba
nd

ga
p 

(e
V)

Temperature (K)

AlAs on GaAs substrate

			   (a)							       (b)

150 200 250 300 350 400

1.76

1.78

1.80

1.82

1.84

1.86

1.88

1.90

1.92
AlAs on InAs substrate

Ba
nd

ga
p 

(e
V)

Temperature (K)
(c)

Figure 1.  Temperature dependant bandgap of AlAs binary grown on (a) AlAs (b) GaAs (c) InAs substrates.
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Figure 2.  Summary of effects of substrates and temperature 
on the bandgap of AlAs binary.

of GaAs is reduced from 0.38 to 0.28 eV on increasing 
the temperature from 150K to 400K (Figure 3 (c)). The 
overall reduction in bandgap of bulk GaAs material with 
different substrates for increasing the temperature have 
been reviewed in Figure 4.  

In Figures 5 ((a), (b), and (c)), emphasis has been 
given on the reduction in bandgap of InAs grown on AlAs, 
GaAs and InAs substrates kept on increasing temperature. 
For AlAs and GaAs substrates, the bandgap of InAs is 
reduced from ~0.51 eV to ~0.45 eV on increasing the 
temperature from 150K to 400K (Figures 5 (a) and (b)); 
while with the InAs substrate (with the lattice matched 
system) the bandgap is reduced from 0.40 to 0.33 eV on 
increasing the temperature (Figure 5 (c)). The diminution 
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Figure 3.  Temperature dependant bandgap of GaAs binary grown on (a) AlAs (b) GaAs (c) InAs substrates.
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Figure 4.  Summary of effects of substrates and temperature 
on the bandgap of GaAs binary.

in bandgap of bulk InAs material with different substrates 
on growing the temperature has been analyzed in Figure 
6. Similarly, the temperature-dependent behavior of 
InP has been studied in Figures 7 ((a), (b), and (c)) and  
Figure 8.

Refer to Figures 7 ((a), (b), and (c)), for AlP and GaP 
substrates, the bandgap of InP is reduced from ~1.52 eV 
to ~1.43 eV on increasing the temperature from 150K 
to 400K; while with the InP substrate (lattice matched 
substrate) the bandgap of InP is reduced from 1.41 
to 1.32 eV on increasing the temperature from 150K 
to 400K (Figure 3 (c)). These reductions of bandgap 
with increasing temperature have been summarized in  
Figure 8.  
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Figure 5.  Temperature dependant bandgap of InAs binary grown on (a) AlAs (b) GaAs (c) InAs substrates.
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Figure 6.  Summary of effects of substrates and temperature 
on the bandgap of InAs binary.

4.0 Conclusion
The temperature dependence of the band structures of 
bulk binaries grown on several substrates, including 
AlAs, GaAs, InAs, and InP, demonstrating the combined 
influence of substrate and temperature has been studied 
successfully. The k.p approach has been used to the 
computations of the band structures of binary systems 
grown on various substrates. The findings have been 
successfully analyzed. It has been discovered that the 
bandgap decreases with temperature for all binaries, 
although the rate of decrease with temperature varies 
for diverse substrates.  For the knowledge of device 
performance, the results of simulations for the band 
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structures of binaries grown on substrates with and 
without matching lattices are highly helpful.
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