
Abstract
Additive Manufacturing (AM) processes can theoretically fabricate materials with any complex structures with added 
functionality at low costs. However, the properties of components developed by AM should not lose to the properties observed 
in components fabricated through conventional manufacturing methods. In this study, the corrosion resistance of AlSi10Mg 
alloy processed through Selective Laser Melting (SLM) in contrast to its tra-ditional counterpart, Sand-Casting (SC) was 
investigated. Potentiodynamic polarization tests were performed to study the electrochemical behaviour in a 3.5% NaCl 
solution. It was observed that the corrosion resistance of the SLM material is relatively better than the SC alloy under similar 
test conditions. It may be concluded that the unique solidification conditions existing during the SLM process may lead to 
marginally improved corrosion resistance in the alloy considered. 

*Author for correspondence

1.0 Introduction
Additive Manufacturing (AM) has become the potential 
technology to fabricate components with intricates using 
almost all varieties of engineering materials1,2, including 
crystalline materials (Al-, Ag-, Co-, Cu-, Fe-, Ni-, Ti-, 
etc.)3-25, amorphous materials (bulk metallic glasses)11,26,27, 
quasicrystalline materials28, high entropy alloys29-31, and 
composites32-36. Among the different AM processes, 
Selective Laser Melting (SLM) also known as the Laser 
Powder-Bed Fusion Process (LPBF) is the most progressing 
and widely used technology in which the components 
are manufactured layer-by-layer where the powder-
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bed is scanned by a high-power laser beam (source) as 
governed by a CAD model37-39. The corrosion behaviour 
of SLM-fabricated alloy significantly influences the parts 
in their service conditions, especially in the aerospace, 
automobile, marine, oil, and pipeline industries, etc., It 
is vital to study the effect of various metallurgical features 
present in the microstructure, especially in the point 
of view of corrosion properties40. AlSi10Mg alloy41,42 
and AlSi12 alloy43-45 are the most widely fabricated 
Al-based alloys using the SLM process. Al-based alloys 
containing Si (which imparts fluidity) are extensively 
utilized because of their low melting point/solidification 
range, low shrinkage, and good castability46,47. AlSi10Mg 
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alloys (particularly hypoeutectic) are used in above 
mentioned industries because of their low coefficient 
of thermal expansion, low density, and high specific  
strength48.

The microstructure of AlSi10Mg alloy consists of an 
α-phase containing Al, a β-phase like Mg2Si, and a eutectic 
Al-Si mixture. Previous studies show that the presence 
of coarse and acicular eutectic Si particles deteriorates 
the mechanical properties of AlSi10Mg alloy49-51. Hence, 
the mechanical properties of AlSi10Mg alloy can be 
improved by modifying its microstructure (especially the 
morphology of the Si particles)51. A finer microstructure 
with homogenized eutectic Si particles in the Al matrix 
could be obtained through a rapid solidification 
process like SLM52,53. On the contrary, the cooling rate 
in conventional casting is much less when compared 
to the SLM process54. So, a finer microstructure with 
homogenized eutectic Si particles in the Al matrix could be 
obtained through SLM55. The commercial applications of 
SLM-processed materials depend also on their corrosion 
properties56. Earlier investigations reveal that the 
corrosion resistance of additive-manufactured Al-based 
alloys is higher than its conventional cast counterpart57 
due to homogenized microstructure and the absence of 
Fe-based intermetallics56. On the other hand, some other 
researchers have observed poor corrosion resistance 
because of passive layer malfunctioning56,58. The friction 
stir processing of SLM-fabricated AlSi10Mg results in a 
change in pitting potential and a reduction in corrosion 
rate and corrosion current density thereby enhancing its 
corrosion properties59. Some other researchers have also 
reported similar corrosion resistance for the AlSi10Mg 
alloy produced by both conventional casting and SLM60. 
Some researchers have demonstrated that the corrosion 
properties of the SLM-fabricated AlSi10Mg alloy could 
be improved through a suitable heat treatment process 

by removing any internal stresses formed during rapid 
solidification and achieving uniform distribution of 
eutectic Si particles in the Al matrix61. However, Kubacki 
et al.62 and Gu et al.63 observed a reduced corrosion 
performance in heat-treated AlSi10Mg alloys fabricated 
by SLM.

The reports on the corrosion behaviour of AlSi10Mg 
fabricated by SLM are mixed in nature, where some 
researchers have shown improved corrosion properties 
as compared to their cast counterparts and others 
demonstrated either similar or inferior properties for 
SLM-processed material41,42,61,64. Hence, the present work 
is of utmost significance as it discusses the corrosion 
behaviour of SLM-processed AlSi10Mg alloy by 
potentiodynamic polarization tests and the results are 
compared with their counterpart (sand-cast AlSi10Mg 
alloy). It is hypothesized in this work that the corrosion 
resistance of SLM-processed AlSi10Mg alloy will be better 
than its cast counterpart due to its refined microstructure.

2.0 Materials and Methods

2.1 Sample Preparation
The AlSi10Mg samples were fabricated by SLM using 
the EOSINT M280 system with the standard process 
parameters: 200 W laser power, 500 mm/s scanning speed, 
30 μm layer thickness, and 0.125 mm hatch spacing. 
Both cylindrical specimens and rectangular specimens 
were fabricated according to the ISO/ASTM 52921-
13 standard. Metallic powders were used as feedstock 
material with a particle size of ~50 μm under a pure argon 
gas protective atmosphere. The SLM-processed samples 
were stress-relieved using annealing heat treatment at 
300°C for 2 h in a muffle furnace (Delta Power/2019). The 
cast counterparts were produced by remelting Al alloy 

Alloy(wt.%) Si Mg Mn Fe Cu Sn Ni Zn Ti Pb Al

SLM 10.16 0.41 0.01 0.31 0.01 0.01 0.19 0.01 0.03 0.01 Bal.

SC 10.82 0.27 0.03 0.34 0.07 0.01 0.02 0.01 0.01 0.01 Bal.

Table 1. Chemical composition of the Selective Laser Melted (SLM) and Sand-Cast (SC) AlSi10Mg 
alloys evaluated by optical emission spectrometer
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at 680°C in an induction furnace with inherent stirring. 
Ingots were cast using a sand-casting process employing 
a rectangular iron die of (100 x 10 x 10) mm3. The central 
portion of the ingot was used to prepare test specimens. 
The chemical composition of the SLM and sand-cast 
sample are shown in Table 1.

2.2 Microstructural Characterization
The microstructure of the samples was examined by 
optical microscopy (LEICA DMI8C, Germany) coupled 
with image analyzer software (ENVISION 6.0) and 
Scanning Electron Microscopy (SEM) with a GEMINI 
300 CARL ZEISS (CARL ZEISS, Germany) provided 
with spot chemical analysis using an Energy Dispersive 
Spectroscopy (EDS) detector. SiC emery papers (280, 320, 
400, 800) were used to rough grind the sample surfaces. 
Then the samples were subjected to diamond polishing 
with a particle size of 5 µm, 3 µm, and 1 µm, respectively. 
Kallings reagent (33-50 % Ethanol, ~2% Cupric chloride 
dihydrate, 33-50 % hydrochloric acid, and 0-33% water) 
was used to etch the samples for microstructural analysis. 
Samples were exposed to etching reagent for 10 seconds 
to reveal the microstructures

2.3 Phase Analysis
The internal phases present in the AlSi10Mg samples 
were identified using X-ray diffractometer ULTIMA IV, 
RIGAKU (RIGAKU, Tokyo, Japan) with Cu-Kα radiation 
using the following parameters: 40 kV voltage, 30 mA 
current, spot size 5 x 5 mm and 2°/min scanning rate. 
X’pertHighscore Plus software was used to analyze the 
diffraction peaks.

2.4 Mechanical Testing
The microhardness of the AlSi10Mg samples was 
measured using the Vickers microhardness tester. 
Vickers microhardness of the sample was calculated on 
the longitudinal section of the as-built parts using an 
Indentec 5030KV microhardness testing machine with a 
0.5 kg load and a 10 s dwell time. 3 tests were conducted 
and the mean value is reported. 

2.5 Electrochemical Characterization
The corrosion behaviour was investigated using 
electrochemical characterization in the form of 
Potentiodynamic Polarization (PDP) analysis as well as 
by weight loss tests. The corrosion tests were conducted 
using a 3.5% NaCl solution with an electrolyte containing 
naturally dissolved oxygen. The PDP analysis was done 
with BIOLOGIC SP-150 incorporated with Ec-Lab 
software V10.44. The tests were conducted using a 
standard three-electrode cell with a Saturated Calomel 
Electrode (SCE) as a reference electrode and using 0.5 
mV/s scanning rate from -2 V to -0.6 V. This PDP is 
a preliminary and qualitative method to evaluate the 
sample. 

3.0 Results and Discussion

3.1 Microstructural Analysis
The optical images along the cross-section of the SC 
and SLM fabricated AlSi10Mg samples are shown in 
Figure 1 (a)-(c) respectively. The microstructure of the 
SC AlSi10Mg alloy consists of pro-eutectic Al-dendrites 

Figure 1. Optical microscopy images of the (a) sand-cast and selective laser melting processed AlSi10Mg 
alloy at (b) lower magnification and (c) higher magnification.
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along with Al-Si eutectics and some porosity. The 
observed microstructure in Figure 1 (a) is typical for 
any hypoeutectic composition. It was observed that 
the solidification rate of SLM-processed AlSi10Mg is 
comparatively higher than that of its SC counterpart 
and hence a very fine microstructure is obtained at the 
same scale. However, the microstructure is difficult 
to resolve at the length scale considered (Figure 1 (b)). 
Only features like the laser melting tracks are visible 
under the length scale considered as highlighted in 
Figure 1(b). A higher magnification optical image of 
SLM-fabricated AlSi10Mg is shown in Figure 1(c). 
The microstructure shows the dendritic features at an 
excellent scale (in a sub-micron regime) where neither 
eutectic morphology nor the presence of Si platelets is 
observed, unlike the cast condition. In short, it may be 
summarized that the SLM-processed samples do not 
show a typical hypo-eutectic-like microstructure but a 
unique morphology. The present results illustrate that 
the high cooling rates observed during the SLM process 
lead to refined microstructure features65,66. In addition, 
the unique solidification conditions existing during SLM 

fabrication lead to variations in the morphology of the 
microstructure54. 

SEM images of the SC and SLM fabricated AlSi10Mg 
samples are shown in Figure 2. The microstructure of 
the SC AlSi10Mg alloy (Figure 2(a)) shows the presence 
of hypo-eutectic Al dendrites distributed all over the 
sample. In addition, eutectic Al-Si and some minor 
precipitates of Fe-Mn are also observed. The magnified 
images (Figure 2 (b), (c)) show the presence of Si platelets 
with the presence of some defects like micro-cracks 
within the Si platelets. In addition, the SC materials show 
typical casting defects like porosity. In the SLM fabricated 
samples (Figure 2 (d)-(f)), the melt pool features along 
with the overlaps present due to successive laser scanning 
which remelts some parts of the previously solidified 
layers. The stacking of the melt pool features results due 
to successive melting and solidification of different layers 
during the SLM process. The microstructure of the SLM-
processed AlSi10Mg alloy (Figure 2 (e), (f)) primarily 
consists of a cellular microstructure with Al in the core 
of the cells and Si along the cell boundaries52. The Si is 
not present in the form of particles/platelets but as a 

Figure 2. Scanning electron microscopy images of the AlSi10Mg samples fabricated by (a-c) sand 
cast, and (d-f) selective laser melting.
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continuous phase. It was also observed that the porosity 
present in the SLM samples is mostly accumulated at 
the melt pool boundaries, which is typical for the SLM 
process67. The significant differences observed in the 
microstructures of the AlSi10Mg fabricated by both SC 
and SLM along the different length scales for the basis 
for the differences in the different properties observed in 
these samples including corrosion properties.

3.2 Phase Identification
Figure 3 shows the XRD patterns of both SC and SLM-
processed AlSi10Mg alloy. Both the samples show the 
presence of Al and Si phases, as expected. The intensity 
for the Al peaks has reversed between (111) and (022) 
in the SLM condition suggesting the presence of 
crystallographic texture in the material, which is absent 
in the SC counterpart. On the other hand, the SC material 
shows some small traces of the Fe-Mn phase, which is not 
the case in the SLM condition. Such minor differences 
in the phase might be due to the minor variations in the 
trace elements concentration present in these samples 
that come from the feed-stock material. The peaks are 
found to be broadened for the SLM samples as compared 
to the SC counterparts because of the following reasons: 
(1) high degree of internal stresses, (2) Supersaturation of 
Si in the Al matrix, (3) fine crystallite sizes, and (3) high 

degree of defect concentration, especially dislocation 
density, and stacking faults. The dislocation density of the 
AlSi10Mg sample processed by SLM (3 × 1015 m/m3) is 
three orders of magnitude higher than the SC AlSi10Mg 
alloy (6 × 1012 m/m3), which is typical for SLM-processed 
materials8,68. The crystallite size of Al is observed to be 122 
nm and 268 nm for the AlSi10Mg fabricated by SLM and 
SC, respectively. At the same time, the lattice parameters 
for Al in the Al10SiMg alloy fabricated by SC and SLM 
routes are found to be 0.40521 nm and 0.40513 nm 
respectively, which also gives information about the peak 
positioning that comes from the supersaturation levels 
observed in the Al lattice44,68.

3.3 Mechanical Properties
The mechanical properties of the AlSi10Mg samples are 
tested using a Vickers hardness tester. The SC sample 
shows a hardness of 35 HV, whereas the SLM samples 
show a hardness of 135 HV, which is to the published 
literature44,69. Such huge differences in the mechanical 
properties (like hardness) between the SLM and the SC 
alloy may be attributed to the following: (1) The presence 
of a fine microstructure in the SLM samples as compared 
to the SC counterpart, (2) the presence of a supersaturated 
solid solution in the SLM processed AlSi10Mg sample, 
(3) presence of a high degree of internal defects like 
dislocations in the SLM-fabricated AlSi10Mg, (4) 
presence of unique microstructural distribution in the 
SLM-processed samples as compared to the SC ones, and 
(5) the morphology of Si present along with their length 
scale. 

3.4 Corrosion Properties
Figure 4 and Table 2 show the electrochemical analysis of 
the AlSi10Mg fabricated by both SC and SLM in the form 
of PDP curves and Tafel extrapolation plots respectively. 
The findings of this work from PDP analysis show that 
the corrosion resistance of both the SLM-fabricated and 
the SC counterparts are almost similar. From the Tafel 
plot, it may be observed that the corrosion potential 
(Ecorr) for the SLM-fabricated AlSi10Mg alloy is 20 mV 
more than that of the SC counterpart. A positive rise 
in Ecorr (an indicator of corrosion susceptibility) reveals 
that the specimens fabricated by SLM show relatively 

Figure 3. The X-ray diffraction patterns for the AlSi10Mg 
alloy fabricated through the sand-casting and selective laser 
melting routes.
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improved corrosion resistance than the SC samples. The 
relatively better corrosion performance of the additively 
manufactured alloy could be credited significantly to 
the rapid solidification rate prevalent during the SLM 
process. The rapid solidification rates observed during 
SLM help in refining the microstructure, especially the 
morphology and distribution of the Si. The significant 
increase in applied voltage results in a rapid rise in the 
anodic current showing a pitting corrosion behavior, 
which is more prevalent in the SC AlSi10Mg alloy than 
in the SLM-fabricated sample, as seen in the anodic 
side of the Tafel plot in Figure 4. From the PDP curves, 
it was noted that the SCAlSi10Mg shows higher current 
densities than the SLM-fabricated alloys, which indicates 
lower corrosion resistance. This behaviour was also 
validated from Tafel extrapolation measurements, which 
show that the corrosion rate of the SLM processed alloy 

was found to be 0.21 mpy as compared to the SC samples, 
which is 0.27 mpy. The present results demonstrate that 
the SLM-processed Al10SiMg shows better corrosion 
resistance than the SC counterpart when tested in 3.5% 
NaCl medium unlike most of the published results where 
mixed properties can be seen.

4. Conclusions
The corrosion properties of the AlSi10Mg samples 
fabricated by both SC and SLM are evaluated and 
compared. It has been observed that the corrosion 
properties of the SLM-fabricated AlSi10Mg alloy 
show slightly improved resistance as compared to its 
sand-cast counterpart. The distinct contracts in the 
microstructural features namely (1) fine microstructural 
morphology with unique distribution of phases in the 
SLM samples as compared to the SC counterpart, (2) the 
presence of a supersaturated solid solution in the SLM 
processed AlSi10Mg sample, (3) the presence of a high 
degree of internal defects like dislocations in the SLM-
fabricated AlSi10Mg, etc. lead to such difference in the 
corrosion properties. In addition, the SLM samples also 
show relatively high hardness as compared to their cast 
counterpart, suggesting that the SLM process not only 
produced samples with complex shapes and added 
functionalities but also can produce samples with 
improved properties than their cast counterparts.
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Figure 4. Potentiodynamic polarization curves were 
observed for the AlSi10Mg samples in 3.5% NaCl solution 
fabri-cated by sand-casting and selective laser melting 
process.

Specimen Ecorr (V) Icorr (μA/cm2) CR (mpy)

SLM -0.76 0.50 0.21

Sand Cast -0.74 0.63 0.27

Table 2. Corrosion parameters evaluated from PDP curves and Tafel 
extrapolation
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