
Abstract
This paper presents a novel method of “power system dynamic security assessment” using “decision tree (DT) classifier”. The 
standard “pattern recognition framework”, has been followed in the research work presented in this paper, in order to ensure 
that real-time implementation of the proposed framework is feasible. With the aim of recognizing the “degree of criticality” 
associated with various “pre-contingency operational circumstances,” the “DTSC” was created and taught offline. The “Decision 
Tree Security Classifier (DTSC)” was successfully implemented in a simulated environment to recognize a power system’s 
“unforeseen operating conditions” and predict their vulnerability to “post- contingency dynamic insecurity”. 

*Author for correspondence

1.0  Introduction
Electrical power systems are complex networks designed 
to produce and supply electrical power reliably and 
economically to the consumers. In recent years, there has 
been increasing competition among the power utilities 
to deliver quality electrical power at affordable rates. 
De- regulation1 in electrical power market has further 
intensified such competition and forced all the three 
major entities, namely the generation, transmission and 
distribution system operators to utilize their resources 
to the maximum possible extent. While this has led the 
power generators to push the operation of synchronous 
generators close to their stability limits, the transmission 
utilities have been compelled to exploit the network 
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capacities to highest possible extent. Operating such 
overstressed power systems are technically challenging, 
as any major perturbation can lead to catastrophic 
consequences, including equipment failure, system 
collapses and complete black outs. These overstressed power 
systems have therefore raised serious concerns about 
operational reliability and have posed new challenges to 
“power system security”. A power system network often 
experiences severe disturbances like equipment outages, such 
as outage of some of the generating units, transformers, 
and transmission lines etc., commonly termed as the 
“contingencies”. Such contingencies often result due to 
unintended operation and mal-operation of the system 
protection devices, such as the relays. The relays are 
generally intended to protect major power equipment 
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like alternators, transformers and transmission lines 
from a variety of plausible power system faults. When 
a fault occurs, the relay dedicated to protect a particular 
equipment is supposed to operate and isolate the faulty 
equipment selectively, from healthy part of the system. 
However, faulty operation of a relay such as a relay mal-
tripping may lead to isolation of much larger section of 
a power system than it is actually necessary to isolate the 
faulty equipment. The consequences are the sudden loss 
generators, transformers and important transmission 
lines, which may challenge “power system security”. 
A power system can be called operationally “secure” if 
there is little possibility of a “wide- scale system outage” 
or complete “black out” consequent to any major 
perturbations, which can result temporary suspension 
of system operation and interruption of power supply 
to consumers. It is imperative that operation of a power 
system must be “secure” under all conditions. The design 
of a power system should therefore be robust to absorb 
the consequences of major contingencies, without much 
impact on “system security”. It is also important to 
follow certain operational practices, which are critical 
for maintaining “system security”, even when some 
critical equipment is unavailable due to contingencies. 
“Power system security analysis” is therefore considered 
one among the most important studies in power system 
operation and research, which is meant to evaluate the 
resilience of a power system network against variety of 
contingencies which a power network may experience in 
day to day operation. The power system “contingencies”, can 
therefore be viewed as the adverse events which can result 
undesirable circumstances and operating conditions, 
which are plausible, but not always predictable with high 
degree of certainty. “Power system security analysis” 
includes: “Static Security Analysis (SSA)”2 and “Dynamic 
Security Analysis (DSA)”3. After a severe disturbance and 
contingency, power system usually undergoes a change of 
“state”. It is desirable that a power system restores back to 
“normal” or “stable” state post such contingencies. SSA 
assumes that stable operation is restored post disturbance 
and the analysis mainly focuses on whether any kind 
of “limit violation” or any compromise with system’s 
physical or security parameters occurred in order to 
reach post-contingency new steady state operating point4. 
In the event of a severe contingency, quick transition to 
new steady-state operating point is often infeasible and 

the system may continue to operate in a “quasi-stable 
state” for a considerably long duration of time5. Unlike 
in SSA, “Dynamic Security Analysis (DSA)”6,7 involves 
study of the operating state transition post contingencies. 
Thus, the “quasi-stable operating state”, referred earlier 
is of greater significance in DSA. There exist several 
methods for “dynamic security assessment” of power 
system. “Time Domain Simulation (TDS)” is considered 
a relatively accurate method for DSA for studying “large 
disturbances rotor angle stability” analysis, also known 
as “Transient Stability Analysis  (TSA)”3. TDS requires 
representation a power system by a set of non-linear time 
domain equations to model the dynamic characteristic of 
every power system equipment. These equations are then 
solved by “numerical integration” methods in order to 
assess dynamic behavior of the system post contingency 
and TSA then analyses whether a disturbance may lead to 
loss of stability. The major hindrance in performing TSA 
is the heavy computational overhead, which makes the 
analysis both time and resource consuming and usually 
slow. This renders many of the existing DSA techniques 
unsuitable for real-time application8. “Direct method” 
of TSA, which utilizes “transient energy function” is a 
viable alternative approach to TDS for determining post 
contingency operating condition of a power system9. 
However, the “direct method” uses reduced order 
modeling of a “contingent system”, and therefore, usually 
lacks the high levels of accuracy which TDS offers. It is 
worth mentioning that, the vulnerable “pre-contingency 
operating states” of a power system, which can result 
potential instability and system outages are often 
unique. As such, almost no exclusive method to reveal 
such vulnerable operating conditions, fast enough, to be 
usable in “real-time security assessment” hardly exists. It 
is, therefore imperative, that developing a powerful and 
robust “online security monitoring system” is of pivotal 
importance in order to assess the current “security level” of 
a power system and to make the power system operator 
aware of possible security issues. When a security issue is 
detected, it is also necessary to take appropriate preventive 
and control actions to avert any possible future system 
outage and to regain “system security”.

“Power system security analysis” has been a major 
focus area of power system research for long. The 
review of existing literature reveals that, researchers8,10 

considered “Time Domain Simulation (TDS)” as one 



Power System Transient Stability Analysis using  Decision Tree Classifier- A Case Study on the IEEE 57-Bus System

 Vol 71 (12A) | December 2023 | http://www.informaticsjournals.com/index.php/jmmf � Journal of Mines, Metals and Fuels32

of the most accurate methods for “Dynamic Security 
Analysis (DSA)” under large perturbations, which 
is more commonly termed as “Transient  Stability 
Analysis (TSA)”3. The TDS method relies on developed 
mathematical model of a power system network in the 
form of nonlinear time-domain differential and/or 
algebraic equations. These equations can presumably 
represent the dynamic behaviour of generators, loads 
and other dynamic components present in the power 
system. Numerical integration is usually performed to 
solve these equations to obtain the dynamic behaviour 
of a power system under perturbed conditions. However, 
these numerical integrations are highly time and resource 
consuming, and therefore real-time application of TDS 
in TSA is mostly unsuccessful, as the analysis has to 
performed very fast, within short time-frame of few tens 
of milliseconds. The research work in4 however revealed a 
novel method to quickly analyse “transient stability” using  
TDS.

The “direct method”, which uses “transient energy 
function” 11,12 to determine stability of a power system 
at its new “post-contingency operating point”, is an 
alternative to the TDS method and a workable way for 
TSA. Comparing the “direct technique” to the “numerical 
integrations” carried out in TDS, the former requires 
less computer power. However, because it uses “reduced 
order modelling” of the post- contingency system and 
a number of simplifying assumptions and hypotheses, 
the “direct technique” is likewise less accurate than 
TDS13. In order to get around some of the drawbacks of 
the old “energy function” method, a new approach put 
forward in14 generalised the idea of “energy function” 
and expanded the standard “energy function” method 
to create a more expansive “Lyapunov Functions Family 
(LFF)”. Traditionally, the “direct method” was viewed as 
being unfeasible for TSA in large-scale power system 
networks. The “direct method” was reportedly used in 
a recent research study’s15 real-time “dynamic security 
evaluation” of a very large-scale power system. The power 
system employed in the case study described in this 
research had 3000 synchronous generators and 14,500 
system buses. The lack of any viable computational 
solution for quick and accurate real-time DSA prompted 
the scientific community working on power system 
security studies to adopt “Machine Learning (ML)” and 
“Pattern Recognition (PR)” techniques early on. In the 

latter half of the 1980s, several cutting-edge studies16-18 
attempted to map the relationship between a power 
system’s “pre-contingency operational condition” and 
the “dynamic security state” following a contingency. 
Once these underlying correlations could be effectively 
identified, it was possible to anticipate the “dynamic 
stability state” for operating instances with unexpected 
contingencies with the least amount of computational 
work. The ML/PR based algorithms might even forecast 
the “pre-contingency operational conditions”, which 
may have caused these “dynamic unsecure” conditions. A 
strategy to address the “power system transient-stability” 
problem online was developed in a trailblazing research 
paper in16. The authors suggested using “inductive 
inference” to create “rules” that connect system 
parameters with stability in power systems.

The large pool of above-mentioned research works 
reveal that applications of AI and ML can be effective to 
ease the computational burden involved in the analysis 
of “power system security” and therefore, they can be 
effective in the development of fast, real-time “Dynamic 
Security Assessment (DSA)” methods19,20.

The “transient stability-based security evaluation” 
of power system networks in real-time contexts was 
the focus of this paper’s innovative PR technique. In 
the research, an effective “Decision Tree based Security 
Classifier (DTSC)” was created to forecast and categorize 
the dynamic operational states of power systems into 
“safe” and “insecure” classes under a variety of operating 
scenarios and plausible situations. This study work greatly 
decreased the computational cost by utilizing the effective 
“Decision Tree (DT) based pattern categorization”, which 
made the suggested method acceptable for real-time use. 
The “redundant” and “irrelevant” features were removed 
from the relevant system attributes (features) without 
significantly losing information. The report included an 
exemplary case study that illustrated the creation and 
application of the suggested DTSC for “dynamic security 
status categorization” in the IEEE 57-bus power system. 
The suggested method outperformed existing well-
known classifiers based on “Support Vector Machine 
(SVM)”, “Method of Least Squares (MLS)”, “Learning 
Vector Quantization (LVQ)”, and “Probabilistic 
Neural Network (PNN)” in terms of accuracy and 
development/implementation time. The findings were  
encouraging.
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2.0 � The Decision Tree Based 
Security Classifier (DTSC)

The creation of a “security classifier” is intended 
to categorize the “pre-contingency operating 
circumstances” of a power system by assessing its 
susceptibility to “transient instability” in the case of 
a significant contingency or equipment failure. With 
the aim of providing real-time “power system dynamic 
security status prediction and classification,” a “Decision 
Tree Security Classifier,” or “DTSC,” has been created 
as a “Dynamic Security Assessment (DSA)-tool”. The 
Supervisory Control and Data Acquisition (SCADA) 
system was used to acquire real-time power system 
operational data for the DTSC. The expected “post-
contingency dynamic state” of the system—which is 
either “secure” or “insecure” is the DTSC’s output. These 
security evaluations were conducted under a wide range 
of severe, but plausible situations. A power system’s 
“pre-contingency operational states” in which there is 
“zero” possibility of any “critical line-faults” occurring 
are referred to as “secure” classes (faults which can cause 
potential instability). Those “pre-contingency operating 
states” that have at least one (or more) “critical line- 
faults” present and the potential for future instability are 
referred to as “insecure” classes. The number of “critical 
line- faults” that could exist under a given operating 

condition was used to determine the “index of criticality” 
of a “pre- contingency operating condition.” With the 
aim of identifying the “degree of criticality” connected 
to various “pre-contingency operational situations,” the 
“DTSC” was created and taught off-line. In a simulated 
setting, the “DTSC” was effectively used to identify 
“unforeseen operational situations” in a power system and 
forecast its susceptibility to “post-contingency dynamic 
insecurity.” Dynamic Security State Classification by 
DTSC – a Case Study on IEEE 57-bus system.

An illustrative case study showing development 
and implementation of the proposed “Decision Tree 
Security Classifier (DTSC)” for “dynamic security state 
classification” in the IEEE 57-bus power system has been 
presented in this case study. The IEEE 57 Bus Test Case 
represents a portion of the American Electric Power 
System (in the Midwestern US) as it was in the early 
1960’s which contains of 57 buses, 7 generators and 42 
loads. The schematic diagram shown in Figure 1.

2.1 � Offline Simulation of the IEEE 57 Bus 
Test System in MATLAB Power System 
Analysis Toolbox (PSAT)

A “dynamic model” of the IEEE 57-bus system was 
created in MATLAB based “Power System Analysis 
Toolbox (PSAT)” for the present study. The “power flow” 
and “Time Domain Simulation (TDS)” functions, which 
are available in the “Power System Analysis Toolbox 
(PSAT)”, were used in this case study and the “TDS 
function” was suitably extended for the calculation of 
“transient stability”.

All simulations were performed on a “desktop PC” 
running on “Intel Core i7 3.4 GHz CPU with 8GB of 
RAM”. Data files containing power system model-data 
and contingency information were created to serve as 
input to the TDS program. The “time domain simulations” 
were initialized by the “power flow” results. Each “Time 
Domain Simulation  (TDS)” was run over a chosen time-
horizon of 200mS (10 cycles), unless the simulation 
got automatically terminated as a result of singularity 
arising due to plausible “transient instability”. “Transient 
instability” happened in several cases following major 
disturbances, such as faults, when the faults were not 
cleared within tcr. Critical clearing time (tcr) of each line 
fault was determined by running TDS recurrently, by 

Figure 1.  Schematic Diagram of IEEE 57 bus test system.
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varying “fault clearing time” values in the range of 80ms 
~ 180ms in steps of 10ms. The computed values of tcr 
were later used to assess the “security state” of the IEEE 
57-bus system.

2.2 � Simulation of Pre-Contingency 
Operating Conditions for Training the 
DTSC

In the present research work, large numbers of diverse 
and well-spread “pre-contingency Operating Conditions 
(OCs)” were simulated by multiple power-flow 
simulations of the test system. Variable initial starting 
conditions, such as: diffident load-generation scenarios, 
changed network topologies arising out of generator, 
transformer and line outages and their combinations 
were considered while performing such multiple 
power-flow simulations. To simulate well-dispersed 
“pre-contingency OCs” following variations in operating 
conditions were simulated. Load variations in random 
sets of 6 buses were considered at a time. The loads were 
varied in 5 discrete steps of 0.5, 0.75, 1.0, 1.25 & 1.5 p.u. 
of the “base load” of these selected buses. This procedure 
was then recursively followed for next 6 randomly chosen 
buses, not common with any one of the previously 
selected buses. The process was repeated a total of  7 times 
to cover all the 42 load buses. In response to changes in 
the load, generation scenarios also altered, and these 
changes were reflected in the power-flow solutions. The 
aforementioned method resulted in 5×6=30 distinct 
yet plausible load-generation scenarios. The single-
generator outage scenarios were mixed with each of the 
aforementioned 6 loading conditions. A total of 30×8=240 
distinct load- generation-generator outage scenarios 
were simulated, with the IEEE 57 bus system’s 7 number 
generators and “no generator outage” as an additional 
scenario. Multiple generator outages were not taken into 
consideration because doing so would greatly increase 
the number of operating situations that are significantly 
less credible in real-time operation, making it ineffective 
to use huge representations of such operating scenarios 
as training exemplars. Based on the same concept, single 
line-outage cases were seen as another form of variation 
in OC. 80 single line-outage scenarios and 100 load-
generation patterns were combined to simulate the 80 

lines in the test system plus the extra condition of “no 
line-outage.” This led to 81×30=2430 combinations 
of load-generation-line outages that were mutually 
incompatible. In order to mimic a comprehensive view of 
the whole operational area of the IEEE 57-bus test system, 
240+2430 = 2670 distinct yet credible initial steady- state 
OCs were generated.

2.3 � Offline Building and Training of the 
Decision Tree Security Classifier

The Decision Tree Security Classifier (DTSC) was created 
using a “desktop PC” with an Intel Core i7 3.4 GHz 
CPU and 8 GB of RAM using the “Python, scikit-learn” 
framework. The Decision Tree classifier was created using 
the Classification and Regression Tree (CART) paradigm. 
The Operating Cases (OCs) produced earlier served as the 
training set for the DTSC. The goal of the DTSC was to 
divide the OCs into “secure” and “in-secure” categories. 
1780 randomly   picked OCs (about 2/3 of all OCs) were 
utilized to train the DTSC out of the 2670 OCs that were 
simulated. Remaining 890 cases (approximately 1/3rd of 
total OCs) were used later as test OCs. Table 1 depicts 
the distribution of training and test OCs for the DTSC. 
Both training and test data comprised of 59% secure OCs 
(shaded with green colour in Table 1) and  41% insecure 
OCs (shaded with red colour in Table 1).

2.4 � Estimation of DTSC-Building and 
Training Time

With the top-15 highly correlated “feature variable” in as 
attributes/nodes, a “desktop PC” running on “Intel Core i7 
3.4 GHz CPU with 8GB of RAM” accomplished DTSC 
building and training in just over 4.5 hours with only 
1203 iteration. The DT-building and training time in 
such case exceeded 37  hours with average training cycle 
time of 49.15 Sec. Thus, DTSC building and training time 
dropped by more than 87% when using reduced number 
of “feature variables”.

2.5 � Training Accuracy of the Developed 
DTSC

The “training accuracy” of the “DTSC” was evaluated and 
is depicted in the form of “confusion matrix” of Table 
2. The “training accuracy” was found to be encouraging 
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for a large power network like the IEEE 57-bus system 
considered in this case-study.

In the training data-set, 96 “insecure OCs” out of 653 
originally “insecure OC” were misclassified as “secure OCs”. 
However, the rest 557 “insecure OCs” were correctly 
classified as “insecure OCs”.

•	 On the contrary, 35 OCs out of 1127 originally 
“secure OCs” were misclassified as “insecure 

OCs”, while the rest 1092 “secure OCs” were 
correctly identified as “secure OCs”.

Where as
•	 “TP (True Positive)”: when an OC is classified as 

“secure” when it is truly “secure”.
•	 “FP (False Positive)”: an OC is classified as 

“insecure” when it is truly “secure”

Security Conditions No. of credible pre-contingency 
operating conditions

Se
cu

ri
ty

 
St

at
e No. of non- 

critical lines: A 
(tcr> 160 mS)

No. of moderat 
ely critical lines: 
B (80 > tcr > 160 

mS)

No. of highly 
critical lines: C 
(tcr < 80 mS)

Training 
Samples Test Samples

Se
cu

re

A=80 B=0 C=0 0 0

79 ≥ A ≥
55

1 ≤ B ≤
34 C=0 180 90

55 ≥ A ≥
34

34 ≤B ≤
55 C=0 280 140

0 ≤ A ≤
34 B ≥ 55 C=0 570 285

In
se

cu
re

0 ≤A ≤
79 B=(79-A) C=1 450 225

0 ≤A ≤77 B=(79-C- A) 2 ≤ C
≤3 220 110

0 ≤A ≤71 B=(186- C-A) C > 3 80 40

Total: 1780 890

Table 1. Distribution of training and test data for the DTSC

Predicted as

Secure Insecure

A
ct

ua
l Secure TP= 1092 FP = 35 TP + FP = 1127

Insecure FN = 96 TN= 557 FN + TN = 653

TP + FN= 1188 FP + TN= 592 N = 1780

Table 2. Confusion Matrix of the “DTSC” for 1780 training cases
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•	 “TN (True Negative)”: an OC is classified as 
“insecure” when it is truly “insecure”

•	 “FN (False Negative)”: an OC is classified as 
“secure” when it is truly “insecure”

•	 N: Total number of OCs used = TP + FP + TN + 
FN

A number of metrics were developed and employed 
to evaluate the performance of the proposed “DTSC” as 
under using the terminologies explained: numbers of 
unseen test OCs. “Confusion matrix” in Table 3 depicts 
the security state classification results of the DTSC for the 
890 unseen test OCs. The “DTSC” could capably classify 

Predicted as

Secure Insecure

A
ct

ua
l Secure TP = 440 FP = 50 TP + FP = 490

Insecure FN = 40 TN	 = 360 FN + TN = 400

TP + FN= 480 FP + TN= 410 N = 890

Performance Metric Ratio of Cases % value

Classification Accuracy (CA) 800/890 89.9

Composite Misclassification Rate 
(CMR) 1-0.9 0.1

Secure Misclassification Rate 
(SMR) 50/490 0.102

Insecure Misclassification Rate 
(IMR) 40/400 0.1

Table 3. Confusion matrix depicting performance of DTSC on 890 unseen test 
OCs

Table 4. Classification performance of DTSC for the 3143 training 
cases

Performance Metric Ratio of Cases % value

Classification Accuracy (CA) 1649/1780 92.64

Composite Misclassification Rate 
(CMR) (1-0.926) 0.074

Secure Misclassification Rate 
(SMR) 35/1127 0.031

Insecure Misclassification Rate 
(IMR) 96/653 8.24

Table 5. Classification performance of DTSC for unseen test cases 
performance of DTSC for the 3143 training cases
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the unseen cases with only 60-instances of “insecure 
OC” misclassifications and 70-instances of “secure OC” 
misclassifications, which results “Secure Misclassification 
Rate (SMR)” of 10.2% and “Insecure Misclassification 
Rate  (SMR)” of 10%. Table 4 depicts the performance 
of “DTSC” on 3143- training OCs in terms of the 
performance metrics defined in equation(1)–(4).

Classification performance of “DTSC” for unseen test 
operating conditions was evaluated in the way similar 
to what was done previously for the training cases. The 
performance metrics defined in equation (1) – (4) were 
used for a comprehensive assessment of the DTSC’s 
classification efficacy. The results are presented in Table 
5.
“Classification Accuracy (CA)” = (𝑇𝑃 + 𝑇𝑁)⁄𝑁
						      (1)
“Composite Misclassification Rate (CMR)” = (1 – CA)	
						      (2) 
“Secure Misclassification Rate (SMR)” = 𝐹𝑃⁄(𝑇𝑃 + 𝐹𝑃)	
					     (3) 
“Insecure Misclassification Rate (IMR)” = 𝐹𝑁⁄(𝑇𝑁 + 
𝐹𝑁) 						      (4)

3.0 � Performance of the DTSC 
in Classifying Unseen Test 
Operating Cases

After the DTSC was successfully built and trained, its 
“classification performance” was evaluated using 890 

numbers of unseen test OCs. “Confusion matrix” in 
Table 3 depicts the security state classification results of 
the DTSC for the 890 unseen test OCs. The “DTSC” could 
capably classify the unseen cases with only 60-instances 
of “insecure OC” misclassifications and 70-instances of 
“secure OC” misclassifications, which results “Secure 
Misclassification Rate (SMR)” of 10.2% and “Insecure 
Misclassification Rate (SMR)” of 10%.

Classification performance of “DTSC” for unseen test 
operating conditions was evaluated in the way similar 
to what was done previously for the training cases. The 
performance metrics defined in equation (1) – (4) were 
used for a comprehensive assessment of the DTSC’s 
classification efficacy. The results are presented in  
Table 5.

3.1 � Comparison of Classification 
Performance of DTSC with Other 
Classifiers

The effectiveness of the DTSC classification algorithm 
was also evaluated in comparison to that of other well-
known classification algorithms, including the “Support 
Vector Machine (SVM)”, “Method of Least Squares 
(MLS)”, “Learning Vector Quantization (LVQ)”, and 
“Probabilistic Neural Network (PNN)”. Tables 8 and 9 
show the outcomes of the comparison. It is clear from the 
data shown in Table 6 that DTSC provided DSA results 
that were more accurate and trustworthy than those 
provided by KNNSC. Additionally, it was determined 

Classifier CA (%) CMR (%) SMR (%) IMR (%)

DT 89.9 10 10.2 10

KNN 81.04 18.96 21.16 15.79

SVM 79.9 20.1 28.2 17.1

MLS 76.3 23.7 32.3 18.6

LVQ 74.2 25.8 35.5 22.3

PNN 72.6 27.4 39.4 26.21

Table 6. Comparison of performance of different classification methods

Classifier Performance Metrics
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that DTSC outperformed other examined classification 
methods like “SVM,” “MLS,” “LVQ,” and “PNN” in 
terms of classification performance.

The results presented in Table 7 on the other hand 
reveal that the DTSC is computationally lighter and more 
efficient than “KNN”, “SVM”, “MLS”, “LVQ” and “PNN” 
with shorter training and execution times.

4.0 Conclusion
The “Pattern-Recognition (PR)” methodology was 
used in this study to propose yet another innovative 
technique for “Dynamic Security Assessment (DSA)” 
of electrical power systems in real-time. To analyze 
and categorize the dynamic operational states of power 
systems into “safe” and “insecure” classes under a wide 
range of operating situations and plausible eventualities, 
an effective “Decision-Tree Security Classifier (DTSC)” 
was created. The computational cost of the proposed 
method was minimized through the use of effective 
Decision Tree (DT) based pattern categorization, which 
allowed it to be used in real-time. The “redundant” 
and “irrelevant” elements were eliminated without 
significantly compromising information by only 
screening the pertinent system attributes (features). An 
effective technique for identifying “critical qualities” that 
are important in the context of “dynamic security state 
prediction” was found to be “Gini-Index” for “feature 
screening.” The creation and application of the suggested 
DTSC for real-time DSA have been demonstrated in this 
work using an illustrative case study on the IEEE 57-bus 

power system. It performed better than other common 
classification techniques including “SVM,” “MLS,” 
“LVQ,” and “PNN,” and required less time for both 
training and execution.
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