
Abstract
For a graph G having no loops and parallel edges, a labeling on the vertex set of G,Ψ:V(G)→{1,2,…,α} is refers to α-labeling. 
Let ab∈G be an edge. Then the weight the edge ab is zΨ (ab)=Ψ(a)+Ψ(b).  An  α-labeling on the vertex set of G is refers to be an 
edge irregular α-labeling of G if zΨ (a)≠zΨ (b),where a≠b  in  G. The least number α for which the graph G has an edge irregular 
α-labeling is referred to the edge irregularity strength of G, written es(G). The edge irregularity strength of Mycielskian of 
paths and cycles is computed. 

*Author for correspondence

1.0  Introduction
In a simple connected graph G, where V(G) and E(G) 
represent the vertex set and edge set, allocating positive 
integers to a set of vertices (points), edges (lines), or 
both, while meeting specific constraints, is referred to as 
graph labeling. Graph labeling has various applications in 
mines and mining operations to model and solve different 
problems in the mining industry, such as resource 
allocation and scheduling, safety and risk management, 
supply chain management, geological mapping, and 
exploration, etc. 

For a given graph G, the edges are assigned the natural 
numbers so that the addition of the assignment of labels 
to the edges of every vertex is different. Such labeling is 
termed the irregular labeling of the graph G1. The least 
value among the maximum label which is assigned to an 
edge of a graph G is termed as the  irregularity strength 
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of  of G, written s(G).  Calculating s(G) seems to pose 
challenges, even when dealing with a graph G of a basic 
structure1. In their work, Ahmad et al.2 proposed the 
concept of edge irregular α-labelings for graphs, drawing 
inspiration from Chartrand et al.1. A labeling Ψ on the 
vertices V(G) with values from the set {1, 2, ..., α} is refers 
to an α-labeling. 

If, for any pair of distinct edges labeled as a and b, zΨ 
(a)≠zΨ (b), then an α-labeling on V(G) is refers to an edge 
irregular α-labeling of G. The minimum value of α for 
which the graph G possesses an edge irregular α-labeling 
defines the edge irregularity strength, denoted as  
es(G).

The construction of the Mycielskian graph for a given 
graph G is outlined in 3 as follows.

The Mycielskian of a graph G, represented by μ(G), 
where G has a vertex set V(G)={a1, a2,…,an}, is the graph 
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with V(μ(G))={a1, a2,…,an, b1,b2,…,b_n,c} such that  
ai aj ∈ (μ(G)) ⇐ ai aj ∈ E(G);ai bj  ∈ E(μ(G)) ⇐ ai aj E(G);  
and bi c ∈ E(μ(G)), ∀ i=1,2,…,n. 

The Mycielskian of a path P7 and a cycle C6 is shown in 
Figures 1 and 2, respectively.

 2.0 Initial Findings 
Chartrand et al.1 established both the upper and lower 
bounds for es(G) in a given graph G. They also determined 
the precise values of es(G) for paths Pn with order at 
least two, cycles Cn with order at least 3, star graph K1,n 
with order n+1 where n≥1, and double star Sm,n with 
3≤m≤n. Additionally, the authors4,5 determined the edge 
irregularity strength for Toeplitz graphs and the corona 
product of graphs with paths, respectively. The exact 
value of es(μ(G)), where G is disjoint union of graphs is 
determined6. The es(μ(G)), where G is the sunlet graph 
is computed7; es(μ(L(G))) and es(μ(Lc (G)), where L(G) 
is the line graph and Lc (G)  is the line cut-vertex graph 

of G, respectively8. For more information on finding the 
irregularity strength of graphs, see 9-20. 

Inspired by the aforementioned research, we calculate 
es(μ(G)), with G representing both a path and a cycle. 

The following theorem presented in2 facilitates the 
exploration of either the precise value or the limits of 
es(G), as it gives the minimum value of es(G) for a given 
graph G. 

Theorem 2.1 Consider Δ(G) to be the maximum 
degree within a simple graph G. Then  

3.0 � Edge Irregularity Strength in 
the Mycielski Transformation 
of Paths

This section focuses on identifying the edge irregularity 
strength of Mycielski transformation of   paths. The 
following result in2 is well known. 

Theorem 3.1 Consider Cn as a cycle of order on n≥3. 
Then  

 

 With the aid of Theorem 3.1, we establish es(μ(Pn 
)),n≥2 in the subsequent theorem.

 Using Theorem 3.1, we find es(μ(Pn )),n≥2, in the next 
theorem.

Theorem 3.2 Let G=Pn be a path of order n≥2. Then 
es(μ(G))=[2n-1] for n=2,3.

Furthermore,
 

for ;

for  

Proof. Consider G to be a path Pn be a path of order 
n≥2. We have the cases as mentioned below. 

Case 1: For G=P2, G≅C5. By Theorem 3.1, 
es(μ(G))=3=⌈2n-1⌉.

Case 2: For G=P3, let V(μ(G)) and E(μ(G)) of μ(G)  be 
as follows: 

Figure 1.  The Mycielskian of a path P7.

Figure 2.  The Mycielskian of a cycle C6.
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}

Hence, |V(μ(G))|=7, |E(μ(G))|=9, and  Δ(μ(G))=4.
According to Theorem 2.1, es(μ(G)) is guaranteed to 

be at least  max{5, 4}. Thus es(μ(G))=5=⌈2n-1⌉.
Finally, it is enough to show the presence of an edge 

irregular ⌈2n-1⌉=5-labeling to prove the equality.  
Let Ψ:V(μ(G))→{1,2,..,5} be a labeling on V(μ(G)) 

such that Ψ(x)=5; Ψ(xi)=i+2 for         
1≤i≤3;  Ψ(yj)=1 for 1≤j≤2;  Ψ(y3)=2.  

 The edges carry the following weights:

;

;

; 

. 

Clearly, every pair of distinct edges has a different 
edge weight. Therefore, es(μ(G))=⌈2n-1⌉=5. 

Figure 3 shows the edge irregularity strength 
of es(μ(P3)), where the maximum degree Δ=4 and 
|E(μ(G))|=9. 

Case 3: : Let G=Pn be a path, where n≡1,2(mod2),n≠3.
 Let V(μ(G)) and E(μ(G)) of μ(G)  be as follows: 

 Clearly, |V(μ(G))|=2n+1, |E(μ(G))|=4n-3, and 
Δ(μ(G))=n.

 By Theorem 2.1, es(μ(G))≥max{⌈2n-1⌉,n}. As ⌈2n-
1⌉ is greater than n for n≥4, it can be concluded that 
es(μ(G))>⌈2n-1⌉.

Let Ψ be a vertex labeling on V(μ(G)) in order to get 
the upper bound.

Let such that  

for ;

for ; 

for ;

for 

The edges carry the following weights:  

;

;

;

;

. 

 Clearly, every pair of distinct edges has a different edge 
weight. Hence Ψ is an edge irregular labeling with [(5n-
4)/2]  labels, that is, es(G)≤[(5n-4)/2] for n≡2(mod2).  

Case 4: For n≡1(mod2),n≠3, in accordance with 
Theorem 2.1, es(μ(G))>⌈2n-1⌉. 

For the upper bound, let

 be the vertex 

labeling on V(μ(G)) such that 

Figure 3.  es(μ(P3))
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; for ;

for ;

for ;

for .

The edges carry the following weights:

;

;

;

;

. 

Clearly, every pair of distinct edges has a different edge 
weight. Hence Ψ is an edge irregular labeling with ⌈(5n-
3)/2⌉ labels, that is, es(G)≤⌈(5n-3)/2⌉ for n≡1(mod2),n≠3. 
Hence, the proof.  

4.0 � Edge Irregularity Strength of 
Mycielskian of Cycles

This section focuses on identifying the edge irregularity 
strength of Mycielski transformation of cycles.

In the next theorem, we find es(μ(Cn)),n≥3. 
Theorem 4.1 Consider G to be a cycle Cn, n≥3. Then,

for .

for .

Proof. Consider G to be a cycle Cn, n≥3. Initially, we 
establish the result for n=4.  

For G=C4, let V(μ(G)) and E(μ(G)) of μ(G)  be as 
follows: 

Hence |V(μ(G))|=9, |E(μ(G))|=16, and Δ(μ(G))=4. 
According to Theorem 2.1, es(μ(G)) is guaranteed to 

be at least max{9,4}. 
 Hence es(μ(G))≥9=[(4n+1)/2].
In conclusion, demonstrating the existence of an edge 

irregular 12- labeling is sufficient to establish equality. 
Let ϕ:V(μ(G))→{1,2,…,5} be labeling on V(μ(G))  

such that

; for ; 

for ; 

. 

 

The edges carry the following weights:

;

;

;

. 

Clearly, every pair of distinct edges has a different 
edge weight. Therefore, es(μ(G))=12.

Let G=Cn be a cycle of order n≥5. 
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Case 1: : For n=2(i+1),i≥2,
|V(μ(G))|=2n+1, |E(μ(G))|=4n, and Δ(μ(G))=n. 
By Theorem 2.1, es(μ(G))≥max{[(4n+1)/2],n}. Since 

[(4n+1)/2]>n for any n=2(i+1),i≥2,
es(μ(G))≥[(4n+1)/2].
Let Ψ:V(μ(G))→{1,2,…,12i},i≥2, such that
 Ψ(x)=n;Ψ(xn )=-1+n;

for ; 

;

; 

; 

; 

for . 

 

The edges carry the following weights:
 

; 

for ; 

for ;

; 

for ; 

for ; 

; ; 

for 
;

for 
; 

; 

;

for 
. 

Clearly, every pair of distinct edges has a different 
edge weight. Therefore, es(μ(G))=12i,i≥2.  

Case 2: For n=2i+1,i≥1, by Theorem 2.1, 
es(μ(G))≥⌈(4n+1)/2⌉.

Let Ψ:V(μ(G))→{1,2,…,12i-3},i≥1, such that  

; for ;

; ;

for . 

The edges carry the following weights:

; for 
; 

; ; 

for 
; 

; 

. 

For , .

For ,

for 
; 

; 

; ;

for 
. 

 

Clearly, every pair of distinct edges has a different 
edge weight. Therefore, es(μ(G))=12i+3,i≥1.  

5.0 Conclusions
This paper presents findings on the limits of edge 
irregularity strength for Mycielskian transformations 
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applied to paths and cycles. Nevertheless, discovering the 
precise value or limits for the edge irregularity strength of 
many other important classes of graphs, such as the line 
graph, total graph, middle graph, etc., of Mycielskian paths 
and cycles remain open. Graph labeling can be applied 
to represent the mining operations as a graph, where 
vertices represent tasks or activities, and edges represent 
dependencies or constraints. Labels can then be assigned 
to vertices or edges to indicate resource requirements, 
processing times, or other relevant parameters. This 
facilitates the optimization of resource allocation and 
scheduling for efficient mine operations.
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