
Abstract
Researchers widely investigate multi-ferrite nanoparticles due to their fascinating magnetic and electrical properties with 
satisfactory thermal and chemical stabilities. In the present work CuxZn1-xFe2O4(x = 0.2, 0.6, 0.8) were synthesized using the 
auto combustion method. The spinel structure of the prepared samples was verified using XRD. The compositional dependent 
dielectric and ac conductivity studies were performed using impedance spectroscopy technique. The dielectric properties, 
such as complex dielectric constant and impedance, have been studied as a function of frequency. Changes of dielectric loss 
tangent (tan δ) with the frequency have been studied to get information about the energy dispersed inside the materials. The 
ac conduction study, as a function of frequency, suggests the hopping conduction mechanism at the higher frequencies. From 
the complex impedance spectra (Nyquist plots or Cole-Cole plots), On the real axis, we identified a dispersion as opposed to a 
centered semicircle. This suggests a relaxation type other than Debye. The dielectric dispersion observed at lower frequencies 
can be explained using Koop’s phenomenological theory. Since many gases are released during mining and the investigated 
Cu2Fe2O4 is known to be an excellent gas sensor, this study helps to use it effectively in the mining sector. 

*Author for correspondence

1.0  Introduction
Spinel structure nano ferrites, with chemical formula 
MFe2O4, have intriguing magnetic and electric properties 
along with acceptable thermal and chemical stabilities, 
they are found to play a pivotal role in technical fields 
such as communication, medical, and electric fields1. 
Correspondingly multi-ferrite nanoparticles are widely 
investigated by researchers2. The mentioned properties 
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are influenced by grain structure, inhomogeneities, 
presence of voids, surface layers and mainly occupancy 
of cations in the spinel structure3. These factors can be 
doctored through various aspects such as synthesize 
methods, sintering conditions and nature of divalent 
element4. It’s noteworthy to know that ferrites can be 
synthesized through techniques such as co-precipitation, 
micro-emulsion, solid state reaction, sol-gel  
etc.  
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Spinel ferrite unit cell consists of 8 fcc cells of oxygen 
atom, containing 32 oxygen atoms, 16 iron and 8 divalent 
cations5. There are tetrahedral as well as octahedral 
sites in a spinel ferrite. Cation occupancy in these sites 
determine the type of spinel such as inverse, normal and 
mixed spinels. In inverse spinels Fe3+ ions occupy equally 
among tetrahedral and octahedral sites. In normal spinels 
Fe3+ ions occupy octahedral sites and divalent cation 
occupy tetrahedral sites. In mixed spinels divalent cations 
are distributed among both sites6. Zinc ferrite is known to 
exist as normal and copper ferrite crystallizes in inverse 
spinel structure7.

One of the most serious environmental issues affecting 
the mining sector today is acid mine drainage, or AMD.  
The ground surface water that drains from a mining site 
where, sulfide minerals are treated is known as AMD. 
Sulfuric acid is created when sulfide minerals, especially 
pyrite and pyrrhotite, oxidize in water when exposed to 
oxygen. Other minerals are then leached by the acid8. 
Because of this, depending on the location, AMD has a 
range of metal pollutants. Wang et al9. has demonstrated 
that under ambient temperature conditions acid drainage 
solutions can be used to make spinel ferrites.  The ability 
of the ferrite process to scavenge the majority of divalent 
metal ions and the precipitates that are produced to be 
stable and easily recovered by magnetic filtration are 
its two main benefits when treating AMD. A two-step 
continuous ferrite flow method for steady extraction from 
an actual AMD comprising copper, zinc, and arsenic was 
presented by Toshifumi et al10. Another reason to pursue 
the process is the potential commercial use of ferrite as 
recording media and magnetic indicators. 

Dielectric properties refer to a material’s ability to 
respond to an electric field. These properties are often 
characterized by parameters such as dielectric constant, 
dielectric loss, and electrical conductivity. In the case 
of CuFe2O4, its dielectric properties can be influenced 
by factors such as composition, crystal structure, and 
temperature. On the  other hand, in underground mining, 
the air quality can be compromised by dust, fumes, and 
gases released during the extraction process. Gas sensors 
can monitor the air quality in real-time, providing 
information on pollutant levels and helps to implement 
measures to maintain a healthy working environment for 
miners11,12. Gas sensing involves the ability of a material 
to detect and respond to the presence of specific gases. 
The interaction between a gas and the sensing material 

leads to changes in electrical, optical, or other measurable 
properties. In gas sensing applications, CuFe2O4 has 
been explored for its response to various gases, including 
reducing gases like hydrogen and methane. The 
interaction between CuFe2O4 and gases can modulate 
its dielectric constant. Changes in the dielectric constant 
may occur as a result of gas-induced alterations in the 
electronic structure, charge distribution, or polarization 
of the material. This modulation can be exploited for gas 
sensing applications13–15.

Besides this spinel ferrites cater for the applications of 
dielectric material owing to the tunability of the materials 
for the desired region of frequencies. Ferrites can be 
highly suitable for fabricating cores of transformers, high 
frequency applications and microwave absorption owing 
to its minimal dielectric loss and conductivity7. Hence 
engineering the material composition and tailoring the 
properties of the materials under study is important in 
knowing their suitability for the desired applications. In 
particular, dielectric behavior is one of the significant 
areas of ferrites to be studied due to their dependency 
on preparation conditions and the type and quantity 
of dopants16. Accordingly, attempt has been in this 
current research work to study the dielectric properties 
of as prepared Cu0.2Zn0.8Fe2O4, Cu0.6Zn0.4Fe2O4 and 
Cu0.8Zn0.2Fe2O4 samples.

2.0 � Experimental Methods

2.1 � Sample Preparation and XRD Studies
The samples were prepared through an auto combustion 
route. Nitrates of the required metals, copper, zinc and 
iron were weighted stoichiometrically and mixed with 
citric acid in deionized water. The solution was then 
transferred to a preheated furnace at 450° C in a crucible 
for combustion process. After combustion a foamy 
powder was obtained. The as obtained sample was grinded 
to fine powder and further calcinated at 1000˚ C. X-Ray 
Diffraction (XRD) plots of the samples were obtained 
using Rigaku Smart lab to verify crystal formation and 
phase purity. 

2.2 � Impedance Spectroscopy Studies
The electrical impedance analysis is carried out by applying 
an alternating sinusoidal voltage to the sample that is 
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investigated and measuring the ac current response. The 
investigated powder sample is first converted into a pellet 
by applying hydraulic pressure of 5 tons, and then silver 
paste contacts are made to both circular cross-sections 
of the pellet, and copper wires are attached to this silver 
paste contacts. Silver is chosen in making the contacts 
due to its high conductivity. These contacts are then kept 
for annealing at 100°C in the oven for ~12 hours. In the 
present study, Agilent 4294A impedance analyzer, which 
is based on the auto-balanced bridge Implementation, is 
used. The samples under study were scanned from 40 Hz 
to 20 MHz at room temperature (300 K).

3.0 Results and Discussion

3.1 XRD Studies
XRD diffraction pattern of Cu0.2Zn0.8Fe2O4, Cu0.6Zn0.4 

Fe2O4 andCu0.8Zn0.2Fe2O4 are presented in Figure 1.  
Peaks with planes (220), (311), (222), (400), (422), (511), 
(440) were identified correspondingly at 2θ positions 
29.9, 35.2, 36.8, 42.9, 53.2, 56.7, and at 62.3 according to 
ICSD database with reference code 01-077-0012 of copper 
zinc iron oxide. This corresponds to cubic structure with 
space group Fd-3m17. The crystallite size of the samples 

3.2 Complex Dielectric Constant
Unlike in a vacuum, the frequency of external fields 
greatly influences how typical materials react to them. 
This frequency dependence highlights the fact that the 
polarization of a material does not change instantly 
when an electric field is applied. A phase difference can 
be used to represent the response, which must always be 
correlational (arising after the applied field). As a result, 
permittivity is frequently modeled as a complex function 
of the applied field’s (angular) frequency. The complex 
dielectric constant can be written as a sum of real and 
imaginary part as given by

Both real and imaginary parts of the complex 
dielectric constant were calculated as per the equations 
shown below for the complex impedance18.

Where t is the thickness of the pellet and A is the cross-
sectional area of the pellet. Z' and Z''correspond to real 
and imaginary parts of impedance. The variation of both 
the real and imaginary parts of the complex dielectric 
constant with the frequency are shown in Figure 2.

Figure 2(a) shows the variation of the real part of 
dielectric constant (ε̍) of CuxZn1-xFe2O4 (x = 0.2, 0.6, 
0.8) as a function of frequency. From the obtained plots 
we can clearly see that the values of dielectric constant 
are higher at lower frequencies and lower at higher 
frequencies. Maxwell type of polarization phenomena 
as well as Koop’s phenomenological theory, which are in 
agreement with each other, can explain the variation of 
dielectric constant19. According to this theory, exchange 
of electrons between Fe3+ − Fe2+ ascertain the applied 
electric field aiding polarization at lower  frequencies. This 
leads to the variation of the values of dielectric constant 
ranging from higher value and slowly decreasing as the 
frequency is advancing. Higher frequencies, on the other 

Figure 1.  XRD spectra of Cux Zn1-x Fe2 O4 (x = 0.2, 0.6, 
0.8) samples.

was estimated using the Debye Scherrer method and was 
found to be in the range 37 to 47 nm.
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hand, prevent the electron exchange between Fe3+ and 
Fe2+ from tailing the applied electric field, which results 
in a lower dielectric constant value. Similar behavior 
and response we track for the variation of dielectric 
permittivity as a function of frequency.

3.3 � Dielectric Loss Tangent (tan δ) and 
Impedance Measurements

The information about the energy dispersed inside 
materials as a result of impurities and defects is given by 
the dielectric loss tangent. The variation in stoichiometry, 
the Fe3+ content, and structural homogeneity all would 
affect the dielectric loss tangent. The loss tangent is 
additionally influenced by the conduction mechanism20. 

The decrease in energy observed in the ferrite is measured 
by the dielectric loss tangent, which is calculated using 
the formula,

The polarization trails the applied alternating 
field as the dielectric loss tangent grows. The graph 
of dielectric loss that varies with frequency is shown 
in Figure 3(a). The experimental finding shows that 
the dielectric loss factor is high for all the samples 
(studied in this work) in the lower frequency range. The 
existence of grain boundaries influences the dielectric 
loss. Due to the presence of grain boundaries, there is 
greater resistance, which causes significant dielectric 

Figure 2.  Variation of (a) dielectric constant (ε׳) as 
a function of log(f), (b) dielectric permittivity (ε׳׳) as a 
function of log (f) for the systems Cux Zn1-x Fe2 O4 (x = 0.2, 
0.6, 0.8).

Figure 3.  (a) The variation of dielectric loss tangent tan(δ) 
(b) Variation of real part of impedance (Z') of CuxZn1-xFe2O4 

(x=0.2, 0.6, 0.8) as a function of frequency.
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loss. Transport of electrons between Fe3+ and Fe2+ ions 
require sufficient energy at lower frequency, resulting in 
significant dielectric loss. However, because of grains, 
the resistivity decreases in high frequency regions21. The 
electron transport mechanism between the two iron ions 
requires only a little amount of energy at the octahedral  
sites. 

Impedance spectroscopy connects the material’s 
microstructures to its dielectric characteristics. 
Additionally, it aids in the analysis of the effects of 
numerous elements on polycrystalline materials, such 
as grain borders, interfaces, or grains. Impedance 
measurements statistically provide data concerning 
resistive and reactive components22. Figure 3b, the graph 
that represents real part impedance, shows fluctuation 
in the data as a function of frequency. The outcome of 
the experiment demonstrates that z’ decreases with 
frequency.

3.4  � AC Conductivity
The charge carrier and conduction mechanism in ferrite 
materials are explained by conductivity studies. The most 
frequent aspects affecting a material’s conduction behavior 
include grain boundaries, mobility of charge carriers, space 
charge polarization, electron hopping, and particle size. 
The ac conductivity (σac) is calculated using the following  
equation18.

Total conductivity σtot can be written as sum of 
σdc and σac where the dc conductivity is, obviously, a 
frequency independent part of the total conductivity and 
is dominant in low frequency ranges, ac conductivity 
follows Jonscher’s power law relation, and shows 
dispersive behavior at higher frequencies.

)

Eqn. for σac is the Jonscher’s power law23.  is the 
polarizability strength (temperature independent factor) 
and ‘s’ represents exponent term and is temperature 
dependent factor, which gives significant information 
related to the theoretical model used to explain the 
conduction mechanism. The variation of ac conductivity 

(σac) as a function of frequency of CuxZn1-xFe2O4(x = 
0.2, 0.6, 0.8) is shown in Figure 4. From the Figure it is 
evident that conductivity slowly increases at the low 
frequency region, whereas at the higher frequency 
region, conduction starts increasing exponentially, which 
could be attributed to the hopping of infinite charge  
carriers.

Koop’s phenomenological theory24 explains the 
variation in conductivity as a function of frequency quite 
well. This theory not only explains the mechanism of 
higher frequency conductivity, but also sheds light on the 
material aspects. Grain boundaries and grains make up a 
material or compound. The material’s high conductivity is 
attributable to grains, while its low conductivity is directly 

Figure 4.  (a) Variation of σac vs log (f) (b) variation of log 
(σac) vs log (f) is given for samples Cux Zn1-x Fe2 O4(x=0.2, 
0.6, 0.8). The observed values of s are less than 1 supporting 
hopping mechanism.
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attributable to grain boundaries. At lower frequencies, 
grain boundaries cope with the applied frequency, 
resulting in higher resistance and constant conductivity. 
However, at higher frequencies, grain boundaries have 
less of an effect and grains aid in conductivity. As a 
result, conductivity increases exponentially at higher 
frequencies. In this case, charge carriers hop between 
adjacent sites, resulting in increased conductivity. Thus, 
the highly resistive grain boundaries become irrelevant 
at higher frequencies, and hence the conductivity  
increases.

3.5  Cole-Cole Plot (Nyquist Plots)
Complex impedance spectrum (Cole-Cole) plots of 
the samples are demonstrated in Figure 5. From these 
spectra we can acquire information regarding conduction 
mechanism and charge transport properties of the 
materials under study. This indicates a non-Debye type of 
relaxation since we see dispersion on the real axis unlike 
a centered semicircle25. According to previous work on 
ferrites26, researchers have observed two distinct semi 
circles related to compounds under study. The first one, 
at low frequency region, is associated with resistance 
due to grain boundary, whereas one observed at high 
frequency refers to resistance due to grains. Impedance 
spectroscopic study is able to distinguish this both because 
relaxation times of grains and grain boundaries are 
distinct3. In the present investigation, we have observed 

an individual semicircle minor arc, demonstrating 
conduction due to grains is dominant in the systems 
copper doped zinc ferrites. Since all the measurements 
are done at room temperature in the present study, they 
may not necessarily be well resolved. Moreover, in grain 
boundaries transport properties are also associated 
with presence of imperfections which could be more 
predominant than grains.

4.0 Conclusion
Cux Zn1-x Fe2 O4 (x = 0.2, 0.6, 0.8) samples were successfully 
prepared through auto combustion route. From XRD 
analysis homogeneous phase formation of spinel structure 
with space group Fd-3m was verified. The compositional 
dependence of electrical parameters was investigated 
using impedance spectroscopy technique. The observed 
dielectric behavior is in agreement with Koop’s theory 
and loss tangent impedance variance are concluded to 
be due to exchange interaction, presence of grains and 
interfaces. In complex impedance spectrum a non-Debye 
type of relaxation was observed showing conduction is 
mostly mediated by grains. The practical deployment 
of Zn-doped CuFe2O4-based gas sensors in the mining 
industry will greatly increase safety, lessen environmental 
effect, and boost overall mining operations efficiency. 
This shift in dielectric characteristics can be utilized for 
this purpose.
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