
Abstract
The structures under fatigue loading are fault prone. The damage reduces the local stiffness. This local stiffness leads to a 
slope discontinuity in the structure's elastic line. Localizing the local discontinuity reveals the location of the damage. Wavelet 
transform is a powerful tool to localize a local slope discontinuity in a signal. The major challenges in the localization of 
damage in a beam are obtaining the high spatial resolution beam deflection and eliminating the border distortion. The high 
spatial resolution shrinks the border distortion as well as gives more localized crack detection. The reduced border distortion 
leads to the detection of cracks very close to the ends of the beam. In the present work, finite element analysis is used for 
getting the simulated beam deflection. The lifting wavelet is used for the localization of cracks in the beam. The lifting wavelet 
has certain advantages over the classical wavelet. The lifting wavelet possesses perfect reconstruction and a narrower border 
distortion zone. A comparative study is presented between the discrete wavelet transform and the lifting wavelet transform 
for localizing the crack. The ability of lifting wavelet is tested for different noise conditions and multiple crack localization. A 
photographic method is used to get the high-resolution of experimental beam deflection of stainless-steel material. 

*Author for correspondence

1.0 Introduction
Cracks are unavoidable in structures under fluctuating 
loading. The presence of cracks changes the dynamics 
of the structures. These changes in the dynamics are 
utilized for crack identification. The presence of a crack 
in beam-like structures leads to changes in modal 
parameters such as natural frequencies, modal damping, 
and mode shapes3-9. A good amount of literature survey is 
presented on crack localization techniques10-12. The major 
challenge in the crack localization is to get the high spatial 
resolution of beam deflection measurement. Measuring 
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the high resolution of beam deflection with mounting 
traditional sensors is a tedious task13-15. In the present 
work the photographic measurement is used to obtain 
the high measurement spatial resolution beam deflection. 
The procedure for obtaining the experimental beam 
deflection by using photographic method is presented in 
author previous work1. 

Detecting the slope discontinuity from the 
beam deflection uses wavelet transform as the most 
convincing tool16-20. The wavelet transform has several 
representations the new representation or second-
generation representation is the lifting scheme. The lifting 
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scheme has certain advantage over the classical wavelet. 
It has perfect reconstruction properties, and it works well 
with the signal of any size. 

For the experimental verification, a high-resolution 
beam deflection is obtained using the photographic 
method. Then, a bandpass filter is used to smooth the 
experimentally obtained deflection data. A moving 
window variance is applied to the filtered data21. 
Visualization of the results is improved by applying the 
variance twice on the beam deflection. The proposed 
algorithm is also tested for multiple crack localization 
and localization of cracks near the ends of the  
beam.

2.0 Lifting Wavelet
The block diagram of lifting scheme is shown in Figure 1. 
There are three steps in lifting scheme. The first step is split 
step in which the input signal is split into even and odd 
components. The second step is predicting step is similar 
to high pass filtering and leads the detailed coefficients 
(D). The third step is updating step it calculates the scaling 
function and results the approximate coefficients (A). 

The lifting scheme can be employed to any orthogonal 
and biorthogonal wavelet by using the polyphase 
matric factorization22. The lifting scheme reveals the 
discontinuity present in a signal. The beam deflection 
of a crack beam consists local slope discontinuity at the 
crack location. Locating the slope discontinuity present 
in the signal reveals the crack location. The numerical 

simulation for obtaining the beam deflection is presented 
in the next section.

3.0 Numerical Simulation
The simulated beam deflection is obtained by using the 
Timoshenko beam theory. The finite element code is 
developed in MATLAB. The details of the procedure 
to obtain the simulated beam deflection is presented in 
the author’s previous work1. In real practice the beam 
deflection must be contaimated with measurement noise. 
To mimic the measurement noise the white gaussian 
noise is added to the simulated beam deflection. The 
beam deflection of a cantilever beam is plotted in Figure 
2. A noise of 85 dB SNR is added in it. The crack detection 
using the lifting sceme is attempted, the lifting detailed 
coefficients are plotted in Figure 3(a). A clear spikes 
corrosponfding to the crack location is seen. Further for 
comparision purpose the crack localization using the 
DWT is attempted, the DWT detailed coefficients for 
numerical simulation is presented in Figure 3 (b).  It is 
found that the crack localization using both techniques 
is comparable. The crack localization using lifting is 
identical by DWT. For testing the noise robusteness of 
the lifting and DWT scheme, noise of 75 SNR is added 
to the simulated beam deflection. The Wavelet detailed 
coefficients through the lifting and DWT sceme is plotted 
in Figure 3 (c) and Figure 3(d), respectively. Both the 
techniques gives a comparble and likely dominat spikes 
corrosdponding to the crack location.
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Figure 1. Block diagram of lifting steps.
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3.1 Effects of Measurement Resolution
To study the effects of measurement resolution, the 
number of data points along the beam length is varied. 

The beam deflection with 20 and 40 data points are 
taken. Responses at FE nodes are considered to be the 
measurement data for the beam deflection. The beam 

Figure 3. Crack localization by using: (a) Lifting scheme at 85 SNR, (b) DWT at 85 SNR, (c) Lifting at 
75 SNR, and (d) DWT at 75 SNR.

Figure 2. Beam deflection shape at an excitation frequency of 40 rad/s.
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deflection with different data points is taken as the input 
signal for the lifting wavelet transform. The lifting wavelet 
coefficients with 20 and 40 data points are plotted in Figure 
4. A spike is obtained at the location of the crack in the 
beam. However, the spike gets localized with an increase 
in measurement resolution. The border distortion zone 
shrinks with the increase in the number of data points. 
Hence, it can be concluded that high measurement 
resolution gives more localized crack detection.  

4.0 Experimentation
For obtaining the high spatial resolution beam deflection,

photographic-based measurement is used. The detail 
discription  for getting the high spatial aresolution beam 
deflection by using photogfraphic method is given in 
the author’s previous work20. The details of experimental 
parameter fro the present work are presented in Table 1. 
The DWT coefficients for the experiment I are plotted 
in Figure 5. Also, the lifting wavelet coefficients for 
the experiment I is plotted in Figure 6. A dominant 
spikes corresponding to the crack location is seen. The 
arrowhead marking shows the edge distortion zone. 
The edge distortion zone covers 0.055 m from both  
ends.  

Figure 4. Effects of measurement resolution on crack localization: (a) With 20 data points, (b) With 40 data points. 

(b)(a)

Figure 5. DWT coefficients for experiment I.
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Similarly, the DWT coefficients and the lifting wavelet 
coefficients for the experiment II are plotted in in Figure 
7 and Figure 8, respectively. Finally, for experiment III, 
the lifting wavelet coefficients are represented in Figure 9.

5.0 Conclusions
In the present work, finite element analysis is used for 
getting the simulated beam deflection. The lifting wavelet 

Figure 6. Lifting wavelet coefficients for experiment I.

Figure 7. DWT coefficients for experiment II.

Experiment I Experiment II Experiment III

Crack size (mm) 4 2 3

Crack location from fixed 
support (m) 0.66 0.1 0.065 and 0.66

Table 1. Parameters for experimentation
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is used for the localization of cracks in the beam. The lifting 
wavelet has certain advantages over the classical wavelet. 
The lifting wavelet possesses perfect reconstruction and 
a narrower border distortion zone. A comparative study 
is presented between the discrete wavelet transform 
and the lifting wavelet transform for localizing the 
crack. The ability of lifting wavelet is tested for different 
noise conditions and multiple crack localization. For 
experimental testing, low-cost photographic-based 
experimentation is used to get the high spatial resolution 
of beam deflection. The high-resolution measurement of 
beam deflection results in localized crack detection and 
a shorter edge distortion zone. The numerical simulation 

and the experimentation show that the proposed lifting 
scheme wavelet-based algorithm can detect the crack 
location correctly. Further, the algorithm is also tested for 
multiple crack detection. 
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