Fabrication and Tensile Analysis of Metal Matrix- Based Hybrid Aluminum Composite for Light Weight Applications

Jump To References Section

Authors

  • Amity University Jaipur, R.J ,IN
  • Amity School of Engineering and Technology, Jaipur, R.J ,IN

DOI:

https://doi.org/10.18311/jmmf/2022/32247

Keywords:

Fabrication, Materials, Composite, Properties, Process, Methods

Abstract

The investigation explored about the aluminum metal matrix composites as a result of interesting innovations which can be utilized and recognized as a promising material for many commercial uses in a variety of sectors. MMCs have outstanding characteristics when compared to traditional metallic materials as well as metals. Within MMCs, a new category of composite materials, aluminum metal matrix composites (AlMMCs), is grabbing recognition. Aluminum metal matrix composites (AlMMCs) are a class of materials which have proved effective in achieving the majority of the stringent standards in applications requiring low weight, higher hardness, and moderate toughness. With a wide range of reinforcing elements and manufacturing flexibility, mechanical features, lightweight, as well as low cost. AlMMCs hold considerable promise for the production of blends with the appropriate characteristics for specific applications. Even though the components have the same structure and quantity, various feature characteristics may be achieved by modifying the production procedures and introducing the reinforcing component. The aim of this study is to offer a quick introduction to the new explored material and study of the previous materials, with an emphasis on the stirring cast technique, as well as numerous aspects that impact the fabrication procedure generally.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-09-30

How to Cite

Jain, A., & Kumar, C. S. (2022). Fabrication and Tensile Analysis of Metal Matrix- Based Hybrid Aluminum Composite for Light Weight Applications. Journal of Mines, Metals and Fuels, 70(9A), 30–42. https://doi.org/10.18311/jmmf/2022/32247

 

References

A Jain, A. K. Pandey, (2019), “Modeling and Optimizing of Different Quality Characteristics in Electrical Discharge Drilling of Titanium Alloy (Grade-5) Sheet” Material Today Proceedings, 18, 182-191 https://doi.org/10.1016/j. matpr.2019.06.292

A. Jain, A. K. Pandey, (2019), “Multiple Quality Optimizations in Electrical Discharge Drilling of Mild Steel Sheet” Material Today Proceedings, 8, 7252-7261 https://doi. org/10.1016/j.matpr.2017.07.054

A. Jain, A.K.Yadav & Y. Shrivastava (2019), “Modelling and Optimization of Different Quality Characteristics in Electric Discharge Drilling of Titanium Alloy Sheet” Material Today Proceedings, 21, 1680-1684 https://doi.org/10.1016/j. matpr.2019.12.010

A. Jain, C. S. Kumar, Y. Shrivastava, (2021), “Fabrication and Machining of Metal Matrix Composite Using Electric Discharge Machining: A Short Review” Evergreen, 8 (4), pp.740-749

A. Jain, C. S. Kumar, Y. Shrivastava, (2021), “Fabrication and Machining of Fiber Matrix Composite through Electric Discharge Machining: A short review” Material Today Proceedings https://doi.org/10.1016/j.matpr.2021.07.288

Altaha, S., Jazaa, Y., Fakeeh, O., Alomari, A., Sallam, H., & Atta, M. (2022). The Effect of Reinforcement Preheating Temperatures on Tribological Behavior of Advanced Quranic Metal-Matrix Composites (QMMC). Materials, 15(2), 659. Doi:10.3390/ma15020659

Aluminum Beverage Cans Provide Countless Benefits to Brewers and Consumers. (2021). Technical Quarterly, 58(4). DOI: 10.1094/tq-58-4-1221-01

Aluminum-based metal matrix composites. (1992). Composites, 23(4), 285. DOI: 10.1016/0010-4361(92)90268-y 9. Application of nondestructive testing techniques to materials testing. (1990). NDT International, 23(1), 39-40. DOI: 10.1016/0308-9126(90)91454-2

B.S, A. (2016). Mechanical Properties of Metal Al/Sic and Alu/Sic Metal Matrix Composites (MMCs). Kne Engineering, 1. Doi: 10.18502/keg.v1i1.520

Belyakov, A. (2020). High-density Micro- and Nano-Grain Size Ceramics. Transition from Open into Closed Pores. Part 1. Powder Preparation, Molding Mixture, Molding. Refractories And Industrial Ceramics, 60(6), 574-581. Doi: 10.1007/s11148-020-00409- z 4518-2019-11-49-58

Belyakov, A. (2020). High-density micro-and nanogranular ceramics. The transition of open pores to closed ones. Part 1. Preparation of powder, molding material, molding. Novye Ogneupory (New Refractories), (11), 49-58. DOI: 10.17073/1683-

C. M. Thakar, S. S. Parkhe, A. Jain, K. Hasina, G. Murugesan (2022), “3d Printing: Basic principles and applications” Material Today Proceedings, 51, 842-849. https://doi.org/10.1016/j.matpr.2021.06.272

Cao, Z., Li, M., Yu, Y., & Luo, H. (2015). Fabrication of Aluminum Foams with Fine Cell Structure under Increased Pressure. Advanced Engineering Materials, 18(6), 1022-1026. DOI: 10.1002/adem.201500511

Di Benedetto, A. (2013). The thermal/thermodynamic theory of flammability: The adiabatic flammability limits. Chemical Engineering Science, 99, 265-273. DOI: 10.1016/j. ces.2013.05.056

Dinakaran, I., & Akinlabi, E. (2018). Low-cost metal matrix composites based on aluminum, magnesium and copper reinforced with fly ash prepared using friction stir processing. Composites Communications, 9, 22-26. Doi: 10.1016/j. coco.2018.04.007

Doosan, C., & Ruy, S. (2009). Prediction of unsaturated soil hydraulic conductivity with electrical conductivity. Water Resources Research, 45(10). DOI: 10.1029/2008wr007309

Downey, W. (1967). Temperature control throughout melting and pouring. JOM, 19(7), 105-108. Doi: 10.1007/ bf03378612

Effect of magnesium on sintering of aluminum powder. (2001). Metal Powder Report, 56(6), 37. DOI: 10.1016/ s0026-0657(01)80339-8 20. Fabrication of metal and ceramic matrix composites. (1994). Composites Manufacturing, 5(4), 244. DOI: 10.1016/0956-7143(94)90156-2

Fukumoto, I., Mekaru, S., Shibata, S., & Nakayama, K. (2005). MMC-08: Fabrication of Composite Material Using Alumina Agglomerated Sludge and Aluminum Powder by Spark Plasma Sintering(MMC-II: Metals And Metal Matrix Composites). The Proceedings Of The JSME Materials And Processing Conference (M&Amp;P), 2005(0), 9. doi: 10.1299/ jsmeintmp.2005.9_3

Growth of single-crystal films of cubic silicon carbide on silicon. (1967). Vacuum, 17(12), 678. DOI: 10.1016/0042-207x(67)91204-3

Gugulothu, B., Seetharaman, S., Vijayakumar, S., & Jenila Rani, D. (2022). Process parameter optimization for tensile strength and Hardness of Al-MMC using RSM technique. Materials Today: Proceedings. doi: 10.1016/j. matpr.2022.03.043

Khondoker, M., & Sameoto, D. (2016). Fabrication methods and applications of micro structured gallium based liquid metal alloys. Smart Materials And Structures, 25(9), 093001. doi: 10.1088/0964-1726/25/9/093001

Li, Z., Xiao, P., Xiong, X., & Huang, B. (2013). Preparation and tribological properties of C fibre reinforced C/SiC dual matrix composites fabrication by liquid silicon infiltration. Solid State Sciences, 16, 6-12. doi: 10.1016/j. solidstatesciences.2012.10.007

Masuda, T., Kakimoto, K., Takahashi, K., & Komasa, Y. (2016). Fabrication of all-ceramic crowns by a new method. Dental Materials Journal, 35(2), 290-297. DOI: 10.4012/ dmj.2015-275

Mazumdar, D., Yadav, R., & Mahato, B. (2002). Transient Flow and Mixing in Steelmaking Ladles during the Initial Period of Gas Stirring. ISIJ International, 42(1), 106-108. doi: 10.2355/isijinternational.42.106

Modifications in Stir Casting Process for the Development of Metal Matrix Composites. (2020). Journal of Xidian University, 14(5). doi: 10.37896/jxu14.5/654

Mogal, Y., & Patil, A. (2022). Influence of the Process Parameters in Stir Casting method for Composite Manufacturing. SSRN Electronic Journal. doi: 10.2139/ ssrn.4043295

Montés, N., Sánchez, F., & Pineda, U. (2013). Efficient Resin Distribution Channel for the Design of Resin Infusion Processes Using Geometric Methods. Advanced Science Letters, 19(3), 760-765. DOI: 10.1166/asl.2013.4817

Mynbaeva, M., & Lebedev, A. (2009). An Effective Method of Characterization of SiC Substrates. Materials Science Forum, 615-617, 279-282. DOI: 10.4028/www.scientific.net/ msf.615-617.279

P. Nagabharam et al., P. (2018). Fabrication and Testing of Aluminum-based Composite Material. International Journal of Mechanical and Production Engineering Research and Development, 8(6), 729-738. DOI: 10.24247/ ijmperddec201875

Parikh, V., Badheka, V., Badgujar, A., & Ghetiya, N. (2021). Fabrication and processing of aluminum alloy metal matrix composites. Materials and Manufacturing Processes, 36(14), 1604-1617. DOI: 10.1080/10426914.2021.1914848

Prasad, T. (2020). Characterization and Fabrication of AZ31/ SiC/Graphite Reinforced Metal Matrix Hybrid Composites by Stir Casting Method. Journal of Advanced Research in Dynamical and Control Systems, 12(SP4), 1-7. doi: 10.5373/ jardcs/v12sp4/20201459

Production and processing of magnesium and magnesium alloys by powder metallurgy. (1995). Metal Powder Report, 50(2), 41. DOI: 10.1016/0026-0657(95)92311-x

Rabin, B. (2010). ChemInform Abstract: Joining of Silicon Carbide/Silicon Carbide Composites and Dense Silicon Carbide Using Combustion Reactions in the Titanium- Carbon-Nickel System. Cheminform, 23(14), no-no. DOI: 10.1002/chin.199214328

Rozhbiany, F., & Jalal, S. (2019). Influence of reinforcement and processing on aluminum matrix composites modified by stir casting route. Advanced Composites Letters, 28, 2633366X1989658. doi: 10.1177/2633366x19896584

Sakowicz, B. (2013). Control and Monitoring System for Composite Materials Fabrication Based on PPS Method. International Journal of Modeling and Optimization, 445- 449. DOI: 10.7763/ijmo.2013.v3.317.

Sasaki, G., Shinoda, T., Fuyama, N., Mastugi, K., & Yanagisawa, O. (2005). MMC-09: Tensile Strength of Aluminum Borate Whisker/AZ91D Magnesium Alloy Composites Prepared by Comp-casting Process (MMCII: Metals and Metal Matrix Composites). The Proceedings of The JSME Materials and Processing Conference (M&Amp;P), 2005(0), 9. doi: 10.1299/jsmeintmp.2005.9_4

Schafer, G., Schmitz, V., & Muller, W. (1983). Comparison of Different Signal Averaging Methods To Improve The Snr For The Ndt Of Coarse-Grained Materials Nondestructive Testing Communications. Nondestructive Testing Communications, 1(1), 1-8. DOI: 10.1080/10589758308952883.

Sharma, V. (2021). Investigation of tribological properties of aluminum oxide reinforced aluminum alloy composites. Materials Today: Proceedings, 37, 2974-2977. DOI: 10.1016/j.matpr.2020.08.709

Shatinskii, V., Karpenko, G., & Shtykalo, I. (1974). Influence of the adsorption effect on the contact interaction of metal pairs in molten metals. Soviet Materials Science, 8(3), 303- 305. doi: 10.1007/bf00730443

Sinha, S., Reddy, S., & Gupta, M. (2006). Scratch hardness and mechanical property correlation for Mg/SiC and Mg/ SiC/Ti metal–matrix composites. Tribology International, 39(2), 184-189. DOI: 10.1016/j.triboint.2005.04.017

Study of the interaction of magnesium powders with hydrogen. (1991). Metal Powder Report, 46(3), 56. DOI: 10.1016/0026-0657(91)92314-4

V. Panwar, D.K. Sharma, K.V.P.Kumar, A. Jain & C. Thakar, (2021), “Experimental Investigations And Optimization Of Surface Roughness In Turning Of EN 36 Alloy Steel Using Response Surface Methodology And Genetic Algorithm” Materials Today: Proceedings, Https://Doi.Org/10.1016/J. Matpr.2021.03.642

Vernagaard, V. (1970). How to buy spray-up and hand lay-up equipment. Composites, 1(3), 191. DOI: 10.1016/0010-4361(70)90562-8

Xie, A., Ito, T., & Higgins, D. (2007). Fabrication and Characterization of Polymer/Liquid Crystal Composite Diffractive Optics by Multiphoton Methods. Advanced Functional Materials, 17(9), 1515-1522. doi: 10.1002/ adfm.200600575

Xie, R. (2020). Light-emitting diodes: brighter NIR-emitting phosphor making light sources smarter. Light: Science & Amp; Applications, 9(1). DOI: 10.1038/s41377-020-00394-5

Xu, X., & Watt, D. (1996). A numerical analysis of the effects of reinforcement content on strength and ductility in Al(SiC)p MMCs. Acta Materialia, 44(11), 4501-4511. doi:10.1016/1359-6454(96)00063-8

Yazdani Sarvestani, H., Beausoleil, C., Genest, M., & Ashrafi, B. (2020). Architectured ceramics with tunable toughness and stiffness. Extreme Mechanics Letters, 39, 100844. DOI: 10.1016/j.eml.2020.100844