Synthesis of Chitosan Stabilised Platinum Nanoparticles and their Characterization

Jump To References Section

Authors

  • Department of Physics and Electronics, Christ (Deemed to be University), Bangalore, Karnataka 560029 ,IN
  • Department of Physics, Bishop Moore College, Mavelikara, Kerala 690110 ,IN
  • Department of Physics and Electronics, Christ (Deemed to be University), Bangalore, Karnataka 560029 ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/34734

Keywords:

Chitosan stabilised platinum, nanoparticles, spectroscopy, x-detraction, biomedical

Abstract

A simplistic green synthesis route for the platinum nanoparticles has been successfully identified by using chloroplatinic acid hexahydrate (H2PtCl6.6H2O) as the metal precursor and sodium borohydride (NaBH4) as the reducing agent at room temperature. Chitosan was used in minute quantities as capping and stabilizing agent. The visual observation of a black coloured colloidal suspension, the characteristic XRD peaks and the absorption peak in the range of 200-300nm confirmed the production of Pt nanoparticles. The average crystallite size calculated using Debye-Scherrer equation is about 19 ± 2 nm and a less intense absorption peak was found at 246nm and 281nm. The FTIR spectroscopy was used to confirm the capping with chitosan molecules. Zeta-potential calculation gave a surface charge of -23.8mV, and this high negative value, then validated the stability of the nanoparticle. The synthesis of platinum nanoparticles is very significant for their catalytic activity and biomedical applications in industrial as well as healthcare sector.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-09-12

How to Cite

AW Felicia, W , A. A., & EI Anila. (2023). Synthesis of Chitosan Stabilised Platinum Nanoparticles and their Characterization. Journal of Mines, Metals and Fuels, 71(7), 917–921. https://doi.org/10.18311/jmmf/2023/34734

Issue

Section

Articles

 

References

Azharuddin, M., Zhu, G. H., Das, D., Ozgur, E., Uzun, L., Turner, A. P. F., & Patra, H. K. (2019): A repertoire of biomedical applications of noble metal nanoparticles. Chemical Communications, 55(49), 6964– 6996. https://doi.org/10.1039/c9cc01741k

Bloch, K., Pardesi, K., Satriano, C., & Ghosh, S. (2021): Bacteriogenic Platinum Nano-particles for Application in Nano-medicine. 9(March), 1–11. https://doi.org/ 10.3389/fchem.2021.624344

Collado-González, M., Montalbán, M. G., Peña-García, J., Pérez-Sánchez, H., Víllora, G., & Díaz Baños, F. G. (2017): Chitosan as stabilizing agent for negatively

charged nano-particles. Carbohydrate Polymers, 161, 63–70. https://doi.org/10.1016/j.carbpol.2016.12.043

Deng, H. H., Lin, X. L., Liu, Y. H., Li, K. L., Zhuang, Q. Q., Peng, H. P., Liu, A. L., Xia, X. H., & Chen, W. (2017): Chitosan-stabilized platinum nano-particles as effective oxidase mimics for colorimetric detection of acid phosphatase. Nano-scale, 9(29), 10292–10300. https://doi.org/10.1039/c7nr03399k

Gharibshahi, E., & Saion, E. (2012): Influence of dose on particle size and optical properties of colloidal platinum nano-particles. International Journal of Molecular Sciences, 13(11), 14723–14741. https:// doi.org/10.3390/ijms131114723

Garlyyev, B., Kratzl, K., Rück, M., Michalièka, J., Fichtner, J., Macak, J. M., Kratky, T., Günther, S., Cokoja, M., Bandarenka, A. S., Gagliardi, A., & Fischer, R.A. (2019): Optimizing the Size of Platinum Nanoparticles for Enhanced Mass Activity in the Electrochemical Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 58(28), 9596–9600. https://doi.org/10.1002/anie.201904492

Khan, M. A. R., Mamun, M. S. Al, & Ara, M. H. (2021): Review on platinum nano-particles: Synthesis, characterization, and applications. Microchemical Journal, 171, 106840. https://doi.org/10.1016/ J.MICROC.2021.106840

Kulikouskaya, V., Kseniya Hileuskaya, Kraskouski, A., Kozerozhets, I., Stepanova, E., Kuzminski, | Ivan, Lijun You and Agabekov, Vladimir (2022): Chitosan-capped silver nano-particles: A comprehensive study of polymer molecular weight effect on the reaction kinetic, physicochemical properties, and synergetic antibacterial potential. https://doi.org/10.1002/ pls2.10069

Mukherjee, S., Kotcherlakota, R., Haque, S., Bhattacharya, D., Kumar, J. M., Chakravarty, S., & Patra, C. R. (2020): Improved delivery of doxorubicin using rationally designed PEGylated platinum nanoparticles for the treatment of melanoma. Materials Science and Engineering C, 108, 110375. https:// doi.org/10.1016/j.msec.2019.110375

Nano-dots, S., Link, S. and El-sayed, M. A. (1999): Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in. 1, 8410–8426.

Negrea, P., Caunii, A., Sarac, I. and Butnariu, M. (2015): The study of infrared spectrum of chitin and chitosan extract as potential sources of biomass. Digest Journal of Nano-materials and Biostructures, 10(4), 1129– 1138.

Quinson, J. and Jensen, K. M. Ø. (2020): From platinum atoms in molecules to colloidal nano-particles: A review on reduction, nucleation and growth mechanisms. Advances in Colloid and Interface Science, 286, 102300. https://doi.org/10.1016/ j.cis.2020.102300

Desai, M. P., Patil, R. V. and Pawar, K. D. (2020): Green biogenic approach to optimized biosynthesis of noble metal nano-particles with potential catalytic, antioxidant and antihaemolytic activities. Process Biochemistry, 98 (July), 172–182. https://doi.org/ 10.1016/j.procbio.2020.08.005

Gharibshahi, E. and Saion, E. (2012): Influence of dose on particle size and optical properties of colloidal platinum nano-particles. International Journal of Molecular Sciences, 13(11), 14723–14741. https:// doi.org/10.3390/ijms131114723

González-Larraza, P. G., López-Goerne, T. M., Padilla- Godínez, F. J., González-López, M. A., Hamdan-Partida, A. and Gómez, E. (2020): IC50 Evaluation of Platinum Nano-catalysts for Cancer Treatment in Fibroblast, HeLa, and DU-145 Cell Lines. ACS Omega, 5(39), 25381– 25389. https://doi.org/10.1021/acsomega. 0c03759

Nguyen, T.K.L., Nguyen, N.D., Dang, V.P., Phan, D. T., Tran, T.H., Nguyen, Q.H. and Mai, H.D. (2019): Synthesis of Platinum Nano-particles by Gamma Co- 60 Ray Irradiation Method Using Chitosan as Stabilizer. Advances in Materials Science and Engineering, 2019, 1–6. https://doi.org/10.1155/2019/ 9624374

Nishanthi, R., Malathi, S., S., J. P. and Palani, P. (2019): Green synthesis and characterization of bioinspired silver, gold and platinum nano-particles and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics. Materials Science and Engineering C, 96, 693–707. https://doi.org/10.1016/j.msec.2018.11.050

Quinson, J., & Jensen, K. M. Ø. (2020): From platinum atoms in molecules to colloidal nano-particles: A review on reduction, nucleation and growth mechanisms. Advances in Colloid and Interface Science, 286, 102300. https://doi.org/10.1016/ j.cis.2020.102300

Shah, M. A. (2012): Sharif University of Technology Growth of uniform nano-particles of platinum by an economical approach at relatively low temperature. Scientia Iranica, 19(3), 964–966. https://doi.org/ 10.1016/j.scient.2012.02.027

Soundarrajan, C., Sankari, A., Dhandapani, P., Maruthamuthu, S., Ravichandran, S., Sozhan, G., & Palaniswamy, N. (2012): Rapid biological synthesis of platinum nano-particles using Ocimum sanctum for water electrolysis applications. 827–833. https:// doi.org/10.1007/s00449-011-0666-0

Silva, S.M.L., Braga, C.R.C., Fook, M.V.L., Raposo, C.M.O., Carvalho, L.H. and Canedo, E.L. (2012): Application of Infrared Spectroscopy to Analysis of Chitosan/Clay Nano-composites. Infrared Spectroscopy - Materials Science, Engineering and Technology. https://doi.org/10.5772/35522

Tokarek, K., Hueso, J.L., Kus, P., & Kyzio³, A. (2013): Green Synthesis of Chitosan-Stabilized Copper. 4940– 4947. https://doi.org/10.1002/ejic.201300594

Trends, R. (2021): Nano-materials for Biomedical Applications: Production, Characterisations, Recent Trends and Difficulties. 1–27.

Vineet Kumar, Ayushi Gautam and Praveen Guleria. (2020): Platinum Nano-particles: Synthesis Strategies and Applications. Nano-architectonics, 70–86. https:/ /doi.org/10.37256/nat.122020286.70-86

Yamagishi, Y., Watari, A., Hayata, Y., Li, X., Kondoh, M., Yoshioka, Y., Tsutsumi, Y., & Yagi, K. (2013): Acute and chronic nephrotoxicity of platinum nano-particles in mice. Nano-scale Research Letters, 8(1), 1–7. https:/ /doi.org/10.1186/1556-276X-8-395

Yang, X., Salado leza, D., Porcel, E., Vargas, C. R. G., Savina, F., Dragoe, D., Remita, H. and Lacombe, S. (2020): A facile one pot synthesis of versatile PEGylated platinum nano-flowers and their application in radiation therapy. International Journal of Molecular Sciences, 21(5), 1–20. https://doi.org/ 10.3390/ijms21051619.