A Review on Thermal Modelling of Residual Stresses during Additive Manufacturing

Jump To References Section

Authors

  • School of Mechanical Engineering, VIT-AP University, Inavolu, Beside AP Secretariat, Amaravati – 522237, Andhra Pradesh ,IN
  • School of Mechanical Engineering, VIT-AP University, Inavolu, Beside AP Secretariat, Amaravati – 522237, Andhra Pradesh ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/35457

Keywords:

Additive Manufacturing, Mechanical Modelling, Residual Stresses, Thermal Modelling

Abstract

Additive Manufacturing (AM) has received interest since it is simpler to manufacture complicated 3D component without the requirement for casting moulds than convective fabrication. AM has a lot of significance in fields like aerospace, medicine, and more to make parts of any kind of complex shape. Since the finished products are subjected to repeated cycles of heating and cooling, there will always be some residual stresses present in them. During layer-over-layer deposition, the large difference in temperature between the layers causes residual stresses, which hurt the performance of the products. As far as the author’s knowledge, there is no thorough review of the thermal modelling of residual stress in AM. In this review paper, the goal is to first get a good understanding of how residual stresses are developed, and then to look at how different models measure them. So, residual stresses can be seen as a key factor in controlling costs, performance, and quality standards of the finished component. This paper does a thorough review of the field to give engineers and researchers up-to-date information and advice about residual stresses.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-11-02

How to Cite

N. Chethan Kumar, & Jhavar, S. (2023). A Review on Thermal Modelling of Residual Stresses during Additive Manufacturing. Journal of Mines, Metals and Fuels, 71(9), 1310–1328. https://doi.org/10.18311/jmmf/2023/35457

 

References

Bartlett JL, Croom BP, Burdick J, Henkel D, Li X. Revealing mechanisms of residual stress development in additive manufacturing via digital image correlation. Addit Manuf. 2018; 22:1-12. https://doi.org/10.1016/j. addma.2018.04.025 DOI: https://doi.org/10.1016/j.addma.2018.04.025

Singh UP, Swaminathan S, Phanikumar G. Thermomechanical approach to study the residual stress evolution in part-scale component during laser additive manufacturing of alloy 718. Mater Des [Internet]. 2022; 222:111048. Available from: https://linkinghub. elsevier.com/retrieve/pii/S0264127522006700 https:// doi.org/10.1016/j.matdes.2022.111048

Zhao L, Santos Macías JG, Dolimont A, Simar A, RivièreLorphèvre E. Comparison of residual stresses obtained by the crack compliance method for parts produced by different metal additive manufacturing techniques and after friction stir processing. Addit Manuf. 2020; 36(July). https://doi.org/10.1016/j.addma.2020.101499 DOI: https://doi.org/10.1016/j.addma.2020.101499

Ahmad B, van der Veen SO, Fitzpatrick ME, Guo H. Residual stress evaluation in selective-laser-melting additively manufactured titanium (Ti-6Al-4V) and inconel 718 using the contour method and numerical simulation. Addit Manuf. 2018; 22(March):571-82. https://doi.org/10.1016/j.addma.2018.06.002 DOI: https://doi.org/10.1016/j.addma.2018.06.002

Wang Q, Ji B, Fu Z, Xu Z. Experimental study on the determination of welding residual stress in rib-deck weld by sharp indentation testing. Thin-Walled Struct. 2021; 161(October 2020). https://doi.org/10.1016/j. tws.2021.107516 DOI: https://doi.org/10.1016/j.tws.2021.107516

Ibrahim Mamane AS, Giljean S, Pac MJ, L’Hostis G. Optimization of the measurement of residual stresses by the incremental hole drilling method. Part I: Numerical correction of experimental errors by a configurable numerical-experimental coupling. Compos Struct. 2022; 294(May). https://doi.org/10.1016/j.compstruct.2022.115703 DOI: https://doi.org/10.1016/j.compstruct.2022.115703

Beghini M, Bertini L, Mori LF. Evaluating non-uniform residual stress by the hole-drilling method with concentric and eccentric holes. Part II: Application of the influence functions to the inverse problem. Strain. 2010; 46(4):337-46. https://doi.org/10.1111/j.1475- 1305.2009.00684.x DOI: https://doi.org/10.1111/j.1475-1305.2009.00684.x

Mahmoodi M, Sedighi M, Tanner DA. Investigation of through thickness residual stress distribution in equal channel angular rolled Al 5083 alloy by layer removal technique and X-ray diffraction. Mater Des. 2012; 40:516-20. https://doi.org/10.1016/j.matdes.2012.03.029 DOI: https://doi.org/10.1016/j.matdes.2012.03.029

Marola S, Bosia S, Veltro A, Fiore G, Manfredi D, Lombardi M, et al. Residual stresses in additively manufactured AlSi10Mg: Raman spectroscopy and X-ray diffraction analysis. Mater Des. 2021; 202. https://doi.org/10.1016/j. matdes.2021.109550 DOI: https://doi.org/10.1016/j.matdes.2021.109550

Yang F, Jiang JQ, Fang F, Wang Y, Ma C. Rapid determination of residual stress profiles in ferrite phase of cold-drawn wire by XRD and layer removal technique. Mater Sci Eng A. 2008; 486(1-2):455-60. https://doi. org/10.1016/j.msea.2007.09.025 DOI: https://doi.org/10.1016/j.msea.2007.09.025

Prevéy PS. Current applications of XRD diffraction residual stress measurement. Dev Mater Charact Technol ASM Int. 1996; (513):103-10.

Liang L, Hu R, Wang J, Huang A, Pang S. A thermal fluid mechanical model of stress evolution for wire feedingbased laser additive manufacturing. J Manuf Process. 2021; 69(May):602-12. https://doi.org/10.1016/j. jmapro.2021.08.008

Yuan Z, Wang Y, Yang G, Tang A, Yang Z, Li S, et al. Evolution of curing residual stresses in composite using multi-scale method. Compos Part B Eng. 2018; 155(July):49-61. https://doi.org/10.1016/j.compositesb.2018.08.012 DOI: https://doi.org/10.1016/j.compositesb.2018.08.012

Ferreri NC, Feng Z, Savage DJ, Brown DW, Clausen B, Sisneros TA, et al. In-situ high-energy X-ray diffraction and crystal plasticity modeling to predict the evolution of texture, twinning, lattice strains and strength during loading and reloading of beryllium. Int J Plast. 2022;150(September 2021). https://doi.org/10.1016/j. ijplas.2022.103217 DOI: https://doi.org/10.1016/j.ijplas.2022.103217

Doumenc G, Couturier L, Courant B, Paillard P, Benoit A, Gautron E, et al. Investigation of microstructure, hardness and residual stresses of wire and arc additive manufactured 6061 aluminium alloy. Materialia [Internet]. 2022; 25:101520. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2589152922002022 https://doi.org/10.1016/j.mtla.2022.101520 DOI: https://doi.org/10.1016/j.mtla.2022.101520

Li R, Xiong J, Lei Y. Investigation on thermal stress evolution induced by wire and arc additive manufacturing for circular thin-walled parts. J Manuf Process. 2019; 40(March):59-67. https://doi.org/10.1016/j. jmapro.2019.03.006 DOI: https://doi.org/10.1016/j.jmapro.2019.03.006

Tanaka H, Tanaka M. Main factors governing residual effective stress for cohesive soils sampled by tube sampling. Soils Found. 2006; 46(2):209-19. https://doi. org/10.3208/sandf.46.209 DOI: https://doi.org/10.3208/sandf.46.209

Manai A, Franz von Bock und Polach RU, Al-Emrani M. A probabilistic study of welding residual stresses distribution and their contribution to the fatigue life. Eng Fail Anal. 2020; 118(July). https://doi.org/10.1016/j.engfailanal.2020.104787 DOI: https://doi.org/10.1016/j.engfailanal.2020.104787

Han X, Li C, Liu Z, Chen X, Deng S. Analysis of residual stress distribution characteristics of laser surface hardening based on Voronoi model. Opt Laser Technol. 2022; 156(July):108613. https://doi.org/10.1016/j.optlastec.2022.108613 DOI: https://doi.org/10.1016/j.optlastec.2022.108613

Wang F, Yang J, Azim I, Bai L, Ma Y. Experimental and numerical evaluations of the distribution and effect of roll-forming residual stress on CFS sigma beams. J Constr Steel Res. 2020;167. https://doi.org/10.1016/j. jcsr.2020.105978 DOI: https://doi.org/10.1016/j.jcsr.2020.105978

Nishimura R, Kishimoto S, Sasaki T, Mitsui S, Shinya M, Arai Y, et al. Fine residual stress distribution measurement of steel materials by SOI pixel detector with synchrotron X-rays. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2020; 978(July). https://doi.org/10.1016/j.nima.2020.164380 DOI: https://doi.org/10.1016/j.nima.2020.164380

Zhang H, Wang Y, Han T, Bao L, Wu Q, Gu S. Numerical and experimental investigation of the formation mechanism and the distribution of the welding residual stress induced by the hybrid laser arc welding of AH36 steel in a butt joint configuration. J Manuf Process. 2020; 51(January):95-108. https://doi.org/10.1016/j. jmapro.2020.01.008 DOI: https://doi.org/10.1016/j.jmapro.2020.01.008

Taraphdar PK, Kumar R, Giri A, Pandey C, Mahapatra MM, Sridhar K. Residual stress distribution in thick double-V butt welds with varying groove configuration, restraints and mechanical tensioning. J Manuf Process. 2021; 68(July):1405-17. https://doi.org/10.1016/j. jmapro.2021.06.046 DOI: https://doi.org/10.1016/j.jmapro.2021.06.046

Wu H, He D, Guo X, Gao M, Tan Z, Wang G. A segmented heat source for efficiently calculating the residual stresses in laser powder bed fusion process. J Manuf Process. 2022; 79(May):206-18. https://doi. org/10.1016/j.jmapro.2022.04.051 DOI: https://doi.org/10.1016/j.jmapro.2022.04.051

Wang S, Lasn K, Elverum CW, Wan D, Echtermeyer A. Novel in-situ residual strain measurements in additive manufacturing specimens by using the Optical Backscatter Reflectometry. Addit Manuf. 2020; 32(September 2019). https://doi.org/10.1016/j. addma.2020.101040 DOI: https://doi.org/10.1016/j.addma.2020.101040

Liu S, Kouadri-Henni A, Gavrus A. Numerical simulation and experimental investigation on the residual stresses in a laser beam welded dual phase DP600 steel plate: Thermo-mechanical material plasticity model. Int J Mech Sci [Internet]. 2017; 122(July 2016):235-43. https://doi.org/10.1016/j.ijmecsci.2017.01.006 DOI: https://doi.org/10.1016/j.ijmecsci.2017.01.006

Schlacher J, Hofer AK, Geier S, Kraleva I, Papšík R, Schwentenwein M, et al. Additive manufacturing of high-strength alumina through a multi-material approach. Open Ceram. 2021; 5(February). https://doi. org/10.1016/j.oceram.2021.100082 DOI: https://doi.org/10.1016/j.oceram.2021.100082

Guo C, Li G, Li S, Hu X, Lu H, Li X, et al. Nano materials science additive manufacturing of Ni-based superalloys: Residual stress, mechanisms of crack formation and strategies for crack inhibition. 2022; (June). https://doi. org/10.1016/j.nanoms.2022.08.001 DOI: https://doi.org/10.1016/j.nanoms.2022.08.001

Dumas M, Fabre D, Valiorgue F, Kermouche G, Van Robaeys A, Girinon M, et al. 3D numerical modelling of turning-induced residual stresses- A two-scale approach based on equivalent thermo-mechanical loadings. Journal of Materials Processing Technology. 2021; 297. https://doi.org/10.1016/j.jmatprotec.2021.117274 DOI: https://doi.org/10.1016/j.jmatprotec.2021.117274

Yang Y, Zhou X, Li Q, Ayas C. A computationally efficient thermo-mechanical model for wire arc additive manufacturing. Addit Manuf. 2021; 46(October 2020). https:// doi.org/10.1016/j.addma.2021.102090 DOI: https://doi.org/10.1016/j.addma.2021.102090

Pelegri AA, Kedlaya DN. Composites: Part A. Construction. 2008; 39(September):1433-43. https://doi. org/10.1016/j.compositesa.2008.05.006 DOI: https://doi.org/10.1016/j.compositesa.2008.05.006

Liang L, Hu R, Wang J, Huang A, Pang S. A thermal fluid mechanical model of stress evolution for wire feedingbased laser additive manufacturing. J Manuf Process. 2021; 69(August):602-12. https://doi.org/10.1016/j. jmapro.2021.08.008 DOI: https://doi.org/10.1016/j.jmapro.2021.08.008

Zhou J, Barrett RA, Leen SB. Three-dimensional finite element modelling for additive manufacturing of Ti-6Al-4V components: Effect of scanning strategies on temperature history and residual stress. J Adv Join Process. 2022; 5(March). https://doi.org/10.1016/j. jajp.2022.100106 DOI: https://doi.org/10.1016/j.jajp.2022.100106

Adhitan RK, Raghavan N. Transient thermo-mechanical modeling of stress evolution and re-melt volume fraction in electron beam additive manufacturing process. Procedia Manuf. 2017; 11(June):571-83. https://doi. org/10.1016/j.promfg.2017.07.151 DOI: https://doi.org/10.1016/j.promfg.2017.07.151

Liu C, Shi Y. A thermo-viscoelastic analytical model for residual stresses and spring-in angles of multilayered thin-walled curved composite parts. Thin-Walled Struct. 2020; 152(February). https://doi.org/10.1016/j. tws.2020.106758 DOI: https://doi.org/10.1016/j.tws.2020.106758

Arafath ARA, Vaziri R, Poursartip A. Closed-form solution for process-induced stresses and deformation of a composite part cured on a solid tool: Part II- Curved geometries. Compos Part A Appl Sci Manuf. 2009; 40(10):1545-57. https://doi.org/10.1016/j.compositesa.2009.01.009 DOI: https://doi.org/10.1016/j.compositesa.2009.01.009

Ghasemi AR, Asghari B, Tabatabaeian A. Determination of the influence of thermo-mechanical factors on the residual stresses of cylindrical composite tubes: Experimental and computational analyses. Int J Press Vessel Pip. 2020; 183(June 2019). https://doi. org/10.1016/j.ijpvp.2020.104098 DOI: https://doi.org/10.1016/j.ijpvp.2020.104098

Akbari S, Taheri-Behrooz F, Shokrieh MM. Characterization of residual stresses in a thin-walled filament wound carbon/epoxy ring using incremental hole drilling method. Compos Sci Technol [Internet]. 2014; 94(April):8-15. https://doi.org/10.1016/j.compscitech.2014.01.008 DOI: https://doi.org/10.1016/j.compscitech.2014.01.008

Liu S, Kouadri-Henni A, Gavrus A. DP600 dual phase steel thermo-elasto-plastic constitutive model considering strain rate and temperature influence on FEM residual stress analysis of laser welding. J Manuf Process. 2018; 35(May 2017):407-19. https://doi.org/10.1016/j. jmapro.2018.07.006 DOI: https://doi.org/10.1016/j.jmapro.2018.07.006

Huang Z, Gao L, Wang Y, Wang F. Determination of the Johnson-Cook constitutive model parameters of materials by cluster global optimization algorithm. J Mater Eng Perform. 2016; 25(9):4099-107. https://doi.org/10.1007/ s11665-016-2178-1 DOI: https://doi.org/10.1007/s11665-016-2178-1

Marques BM, Andrade CM, Neto DM, Oliveira MC, Alves JL, Menezes LF. Numerical analysis of residual stresses in parts produced by selective laser melting process. Procedia Manuf. 2020; 47(2019):1170-7. https:// doi.org/10.1016/j.promfg.2020.04.167 DOI: https://doi.org/10.1016/j.promfg.2020.04.167

Tchuindjang JT, Paydas H, Tran HS, Carrus R, Duchêne L, Mertens A, et al. A new concept for modeling phase transformations in ti6al4v alloy manufactured by directed energy deposition. Materials. 202; 14. https://doi.org/10.3390/ma14112985 PMid:34072987 PMCid:PMC8198765 DOI: https://doi.org/10.3390/ma14112985

Wang Y, Li Q, Qian L, Yang Y. A modified inherent strain model with consideration of the variance of mechanical properties in metal additive manufacturing. J Manuf Process. 2021; 72(August):115-25. https://doi. org/10.1016/j.jmapro.2021.09.059 DOI: https://doi.org/10.1016/j.jmapro.2021.09.059

Gruber K, Ziółkowski G, Pawlak A, Kurzynowski T. Effect of stress relief and inherent strain-based pre-deformation on the geometric accuracy of stator vanes additively manufactured from inconel 718 using laser powder bed fusion. Precis Eng. 2022; 76(November 2021):360-76. https://doi.org/10.1016/j.precisioneng.2022.04.007 DOI: https://doi.org/10.1016/j.precisioneng.2022.04.007

Nagesha BK, Anand Kumar S, Vinodh K, Pathania A, Barad S. A thermo-mechanical modelling approach on the residual stress prediction of SLM processed HPNGV aeroengine part. Mater Today Proc. 2020; 44:4990-6. https://doi.org/10.1016/j.matpr.2020.12.940 DOI: https://doi.org/10.1016/j.matpr.2020.12.940

van Zyl I, Yadroitsava I, Yadroitsev I. Residual stress in TI6AL4V objects produced by direct metal laser sintering. South African J Ind Eng. 2016; 27(4):134-41. https:// doi.org/10.7166/27-4-1468 DOI: https://doi.org/10.7166/27-4-1468

Ren K, Chew Y, Fuh JYH, Zhang YF, Bi GJ. Thermomechanical analyses for optimized path planning in laser aided additive manufacturing processes. Mater Des. 2019; 162:80-93. https://doi.org/10.1016/j.matdes.2018.11.014 DOI: https://doi.org/10.1016/j.matdes.2018.11.014

Singh UP, Swaminathan S, Phanikumar G. Thermomechanical approach to study the residual stress evolution in part-scale component during laser additive manufacturing of alloy 718. Mater Des. 2022;222. https://doi.org/10.1016/j.matdes.2022.111048 DOI: https://doi.org/10.1016/j.matdes.2022.111048

Panda BK, Sahoo S. Thermo-mechanical modeling and validation of stress field during laser powder bed fusion of AlSi10Mg built part. Results Phys. 2019; 12(November 2018):1372-81. https://doi.org/10.1016/j. rinp.2019.01.002 DOI: https://doi.org/10.1016/j.rinp.2019.01.002

Fu P, Zhao J, Zhang X, Kang G, Wang P, Kan Q. Thermomechanically coupled sliding contact shakedown analysis of functionally graded coating-substrate structures. Int J Mech Sci. 2022. https://doi.org/10.1016/j. ijmecsci.2022.107241 DOI: https://doi.org/10.1016/j.ijmecsci.2022.107241

Cooke S, Sweet G, Ahmadi K, Bishop P, Herring R. Thermo-mechanical-metallurgical modelling, validation and characterization of 42CrMo4 steel processed by directed energy deposition. J Manuf Process. 2022; 81(May):537-61. https://doi.org/10.1016/j. jmapro.2022.07.007 DOI: https://doi.org/10.1016/j.jmapro.2022.07.007

Wen-Qing L, Zhao L, Yue Y, Jia-yi W, Zhi- Jiang J, JinYuan Q. Thermo-mechanical stress analysis of feed-water valves in nuclear power plants. Nucl Eng Technol. 2022; 54(3):849-59. https://doi.org/10.1016/j.net.2021.09.018 DOI: https://doi.org/10.1016/j.net.2021.09.018

García-García V, Mejía I, Reyes-Calderón F, Benito JA, Cabrera JM. FE thermo-mechanical simulation of welding residual stresses and distortion in Ti-containing TWIP steel through GTAW process. J Manuf Process. 2020; 59(September):801-15. https://doi.org/10.1016/j. jmapro.2020.09.042 DOI: https://doi.org/10.1016/j.jmapro.2020.09.042

Bock FE, Herrnring J, Froend M, Enz J, Kashaev N, Klusemann B. Experimental and numerical thermo-mechanical analysis of wire-based laser metal deposition of Al-Mg alloys. J Manuf Process. 2021; 64(February):982-95. https://doi.org/10.1016/j. jmapro.2021.02.016 DOI: https://doi.org/10.1016/j.jmapro.2021.02.016

Emanuelli L, Molinari A, Facchini L, Sbettega E, Carmignato S, Bandini M, et al. Effect of heat treatment temperature and turning residual stresses on the plain and notch fatigue strength of Ti-6Al-4V additively manufactured via laser powder bed fusion. Int J Fatigue. 2022; 162(January). https://doi.org/10.1016/j. ijfatigue.2022.107009 DOI: https://doi.org/10.1016/j.ijfatigue.2022.107009

Ghosh A, Sahu VK, Gurao NP. Effect of heat treatment on the ratcheting behaviour of additively manufactured and thermo-mechanically treated Ti-6Al-4V alloy Mater Sci Eng A. 2022; 833(September 2021). https:// doi.org/10.1016/j.msea.2021.142345 DOI: https://doi.org/10.1016/j.msea.2021.142345

Shen H, Lin J, Zhou Z, Liu B. Effect of induction heat treatment on residual stress distribution of components fabricated by wire arc additive manufacturing. J Manuf Process. 2022; 75(December 2021):331-45. https://doi. org/10.1016/j.jmapro.2022.01.018 DOI: https://doi.org/10.1016/j.jmapro.2022.01.018

Seddik R, Seddik M, Atig A, Fathallah R, Infante V, Seddik M. Thermo-mechanical relaxation of compressive residual stresses induced by shot peening relaxation of compressive residual stresses Thermo-mechanical modeling of high turbine blade of an induced by shot peening airp. Procedia Struct Integr [Internet]. 2016; 2:2182-9. Available from: https://doi.org/10.1016/j. prostr.2016.06.273 DOI: https://doi.org/10.1016/j.prostr.2016.06.273

Gebhardt U, Gustmann T, Giebeler L, Hirsch F, Hufenbach JK, Kästner M. Additively manufactured AlSi10Mg lattices - Potential and limits of modelling asdesigned structures. Mater Des. 2022; 220. https://doi. org/10.1016/j.matdes.2022.110796 DOI: https://doi.org/10.1016/j.matdes.2022.110796