Effect of Diffusion-Thermal on Mixed Convective Casson Fluid Flow in a Porous Channel

Jump To References Section

Authors

  • Department of Mathematics, Ramaiah Institute of Technology, Bangalore - 560 054 ,IN
  • Department of Mathematics, Ramaiah Institute of Technology, Bangalore - 560 054 ,IN
  • Department of Chemical Engineering, Ramaiah Institute of Technology, Bangalore - 560 054 ,IN
  • Department of Mathematics, Vivekananda Institute of Technology, Bangalore - 560 074 ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/35811

Keywords:

Casson Fluid, Dufour Effect, Perturbation Technique, Porous Media

Abstract

The main purpose is to study analytically about the Diffusion-thermo impact on mixed convective flow of Casson fluid in a vertical channel in occurrence of porous media, uniform magnetic field and amplification. Similarity transformation is implemented to transform nonlinear coupled PDEs into ODEs. Further, obtained equations were solved using perturbation technique and studied the characters of heat, velocity and concentration of the corporeal system. The influence of nondimensional factors such as Darcy number Da, buoyancy parameter of concentration N, M2 Hartmann number, dufour number df, rate of chemical reaction γ, Schmidt number Sc, thermal buoyancy parameter λ, Prandtl number Pr, Casson parameter β, and Reynolds number R on concentration, temperature and velocity deliberated explicitly. Few important computational work reveals that the Dufour effect Df enhances the concentration, temperature and fluid flow whereas Casson fluid parameter β diminishes the profiles. The earlier work and present work have been compared for a particular case in the nonexistence of Dufour effect and porous media and were found to be coinciding.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-12-20

How to Cite

N. L. Ramesh, P. A. Dinesh, Brijesh, & B. V. Shilpa. (2023). Effect of Diffusion-Thermal on Mixed Convective Casson Fluid Flow in a Porous Channel. Journal of Mines, Metals and Fuels, 71(10), 1526–1536. https://doi.org/10.18311/jmmf/2023/35811

 

References

Casson N. A flow equation for pigment-oil suspensions of the printing ink type. Rheology of Disperse Systems. Oxford: Pergamon Press; 1959. p. 84-104. Available from: https://scirp.org/reference/referencespapers. aspx?referenceid=1510240

De Groot SR, Mazur P. Non-equilibrium Thermodynamics. Amsterdam: North-Holland; 1962. Available from: https://www.worldcat.org/title/ non-equilibrium-thermodynamics-by-sr-de-groot-andp-mazur/oclc/301696976

Pitts DD. Non-equilibrium Thermodynamics. New York: McGraw-Hill; 1962.

Horne FH. Journal of Chemical Physics. 1966; 45:3069. DOI: https://doi.org/10.1063/1.1728062

Bartelt JL, Horne PH. Pure Applied Chemistry. 1970; 22:349. DOI: https://doi.org/10.1351/pac197022030349

Ingle SE. Ph.D. thesis, Michigan State University; 1972.

Rastogi RP, Madan Dufour GL. Effect in liquids. The Journal of Chemical Physics. 1965; 43:4179. doi: 10.1063/1.1696665. DOI: https://doi.org/10.1063/1.1696665

Mason EA, Miller L, Spurling TH. Pressure dependence of the diffusion thermo effect in gases (Dufour Effect). The Journal of Chemical Physics. 1967; 47:1669. doi: 10.1063/1.1712148. DOI: https://doi.org/10.1063/1.1712148

Rastogi RP, Yadava BLS. Dufour effect in liquid mixtures. The Journal of Chemical Physics. 1969; 51:2826. doi: 10.1063/1.1672418. DOI: https://doi.org/10.1063/1.1672418

Sara E Ingle, Frederick H Horne. The Dufour effect. The Journal of Chemical Physics. 1973; 59:5882. doi: 10.1063/1.1679957. DOI: https://doi.org/10.1063/1.1679957

Richard L Rowley, Frederick H Horne. The Dufour effect III Direct experimental determination of the heat of transport of carbon tetrachloride–cyclohexane liquid mixtures. The Journal of Chemical Physics. 1980; 72:131. doi: 10.1063/1.438897. DOI: https://doi.org/10.1063/1.438897

Hort W, Linz SJ, Lucke M. Onset of convection in binary gas mixtures: Role of the Dufour effect. Physical Review A. 1992; 45(6). Available from: https://pubmed.ncbi. nlm.nih.gov/9907422/. DOI: https://doi.org/10.1103/PhysRevA.45.3737

Postelnicu A. Influence of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects. Int J Heat Mass Transfer. 2004; 47:1467–1472. Available from: https://www.sciencedirect.com/science/ article/pii/S0017931003005428 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2003.09.017

Postelnicu A. Influence of chemical reaction on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects. Heat Mass Transfer. 2007; 43:595–602. Available from: https://link.springer.com/article/10.1007/s00231- 006-0132-8 DOI: https://doi.org/10.1007/s00231-006-0132-8

García-Colín LS, García-Perciante AL, SandovalVillalbazo A. Dufour and Soret effects in a magnetized and non-magnetized plasma. Phys Plasmas. 2007; 14:012305. doi: 10.1063/1.2428279 DOI: https://doi.org/10.1063/1.2428279

Beg O, Bakier AY, Prasad VR. Numerical study of free convection magnetohydrodynamic heat and mass transfer from a stretching surface to a saturated porous medium with Soret and Dufour effects. Comput Mater Sci. 2009; 46:57–65. Available from: https://www.sciencedirect.com/science/article/pii/S0927025609000597 DOI: https://doi.org/10.1016/j.commatsci.2009.02.004

Pakravan HA, Yaghoubi M. Combined thermophoresis, Brownian motion and Dufour effects on natural convection of nanofluids. Int J Therm Sci. 2011; 50:394-402. Available from: https://www.sciencedirect.com/science/ article/pii/S1290072910000797 DOI: https://doi.org/10.1016/j.ijthermalsci.2010.03.007

Jha BK, Ajibade AO. Diffusion-thermo effects on free convective heat and mass transfer flow in a vertical channel with symmetric boundary conditions. J Heat Transfer. 2011; 133(5):052502. Available from: https://asmedigitalcollection.asme.org/ heattransfer/article/133/5/052502/468030/DiffusionThermo-Effects-on-Free-Convective-Heat DOI: https://doi.org/10.1115/1.4003240

Nadeem S, Rizwan Ul Haq, Lee C. MHD flow of a Casson fluid over an exponentially shrinking sheet. Scientia Iranica. 2012; 19(6):1550-1553. doi: 10.1016/j. scient.2012.10.021 DOI: https://doi.org/10.1016/j.scient.2012.10.021

Hayat T, Abbasi FM, Al-Yami M, Monaquel S. Slip and Joule heating effects in mixed convection peristaltic transport of nanofluid with Soret and Dufour effects. J Mol Liquids. 2014; 194:93–99. Available from: https://www.sciencedirect.com/science/article/abs/pii/ S016773221400035X DOI: https://doi.org/10.1016/j.molliq.2014.01.021

Animasaun IL, Adebile EA, Fagbade AI. Casson fluid flow with variable thermo-physical property along exponentially stretching sheet with suction and exponentially decaying internal heat generation using the homotopy analysis method. J Niger Math Soc. 2016; 35:1–17. doi: 10.1016/j.jnnms.2015.02.001 DOI: https://doi.org/10.1016/j.jnnms.2015.02.001

Srinivasacharya D, Mallikarjuna B, Bhuvanavijaya R. Soret and Dufour effects on mixed convection along a vertical wavy surface in a porous medium with variable properties. Ain Shams Eng J. 2015; 6:553-564. doi: 10.1016/j.asej.2014.11.007 DOI: https://doi.org/10.1016/j.asej.2014.11.007

Kiran Kumar R V M S S, Sasikala B, Raju MC, Varma SVK. Diffusion-thermo effects on hydromagnetic free convection heat and mass transfer flow through high porous medium bounded by a vertical surface. ChemProcess Eng Res. 2015; 36. Available from: https://www. researchgate.net/publication/316965599

Krupa Lakshmi KL, Gireesha BJ, Rama S R Gorla, Mahanthesh B. Effects of diffusion-thermo and thermodiffusion on two-phase boundary layer flow past a stretching sheet with fluid-particle suspension and chemical reaction: A numerical study. J Niger Math Soc. 2016; 35:66–81. doi: 10.1016/j.jnnms.2015.10.003 DOI: https://doi.org/10.1016/j.jnnms.2015.10.003

Alao FI, Fagbade AI, Falodun BO. Effects of thermal radiation, Soret and Dufour on an unsteady heat and mass transfer flow of a chemically reacting fluid past a semi-infinite vertical plate with viscous dissipation. J Niger Math Soc. 2016; 35:142–158. doi: 10.1016/j. jnnms.2016.01.002 DOI: https://doi.org/10.1016/j.jnnms.2016.01.002

Sravanthi CS. Homotopy analysis solution of MHD slip flow past an exponentially stretching inclined sheet with Soret-Dufour effects. J Niger Math Soc. 2016; 35:208– 226. doi: 10.1016/j.jnnms.2016.02.004 DOI: https://doi.org/10.1016/j.jnnms.2016.02.004

Mahanthesh B, Gireesha BJ, Rama Subba Reddy Gorla. Nanoparticles effect on 3d flow, heat and mass transfer of nanofluid with nonlinear radiation, thermal-diffusion and diffusion-thermo effects. J Nanofluids. 2016; 5:669– 678. Available from: https://www.ingentaconnect.com/ content/10.1166/jon.2016.1257 DOI: https://doi.org/10.1166/jon.2016.1257

Manideep P, Srinivasa Raju R, Siva Nageswar Rao T, Jithender Reddy G. Unsteady MHD free convection flow of Casson fluid over an inclined vertical plate embedded in a porous media. AIP Conf Proc. 2018; 1953:140038. doi: 10.1063/1.5033213 DOI: https://doi.org/10.1063/1.5033213

Irfan Anjum Badruddin. Heat and mass transfer with soret/dufour effect in irregular porous cavity. J Thermophys Heat Transfer. 2019. Available from: https:// arc.aiaa.org/doi/full/10.2514/1.T5666 DOI: https://doi.org/10.2514/1.T5666

Idowu AS, Falodun B . Soret–Dufour effects on MHD heat and mass transfer of Walter’s-B viscoelastic fluid over a semi-infinite vertical plate: spectral relaxation analysis. J Taibah Univ Sci. 2019; 13:49-62. doi: 10.1080/16583655.2018.1523527 DOI: https://doi.org/10.1080/16583655.2018.1523527

Khuram Rafique, Muhammad Imran Anwar, Masnita Misiran, Ilyas Khan, Alharbi SO, Phatiphat Thounthong, Nisar K . Numerical Solution of Casson Nanofluid Flow Over a Non-linear Inclined Surface With Soret and Dufour Effects by Keller-Box Method. Front Phys. 2019; 7:139. Available from: https://www.frontiersin.org/articles/10.3389/fphy.2019.00139/full DOI: https://doi.org/10.3389/fphy.2019.00139

Kaladhar K, Komuraiah E, Madhusudhan Reddy K. Soret and Dufour effects on chemically reacting mixed convection flow in an annulus with Navier slip and convective boundary conditions. Appl Math Nonlinear Sci. 2019; 4(2):475–488. Available from: https://sciendo. com/article/10.2478/AMNS.2019.2.00045 DOI: https://doi.org/10.2478/AMNS.2019.2.00045

Sohail A Khan, Hayat T, Ijaz Khan M, Alsaedi A. Salient features of Dufour and Soret effect in radiative MHD flow of viscous fluid by a rotating cone with entropy generation. Int J Hydrogen Energy. 2020; 45(28):14552- 14564. doi: 10.1016/j.ijhydene.2020.03.123 DOI: https://doi.org/10.1016/j.ijhydene.2020.03.123

Mojeed T Akolade, Amos S Idowu, Adeshina T Adeosun. Multislip and Soret–Dufour influence on nonlinear convection flow of MHD dissipative Casson fluid over a slendering stretching sheet with generalized heat flux phenomenon. Heat Transfer. 2021; 50:3913–3933. doi: 10.1002/htj.22057 DOI: https://doi.org/10.1002/htj.22057

Idowu AS, Falodun BO. Effects of thermophoresis, Soret-Dufour on heat and mass transfer flow of magnetohydrodynamics non-Newtonian nanofluid over an inclined plate. Arab J Basic Appl Sci. 2020; 27(1):149- 165. doi: 10.1080/25765299.2020.1746017 DOI: https://doi.org/10.1080/25765299.2020.1746017

Timothy L Oyekunle, Mojeed T Akolade, Samson A Agunbiade. Thermal-diffusion and diffusion-thermo effects on heat and mass transfer in chemically reacting MHD Casson nanofluid with viscous dissipation. Appl Appl Math Int J (AAM). 2021; 16(1):39. Available from: https://digitalcommons.pvamu.edu/aam/vol16/iss1/39

Shilpa BV, Chandrashekhar DV and Dinesh PA. An analytical study of free and forced convection flow of Casson fluid in a porous channel in presence of porous media. Int J Sci Technol Manage. 2021; 3(3):8–16. Available from: https://www.ijesm.vtu.ac.in/index.php/IJESM/ article/view/588/137

Sowbhagya. Outlook of Density Maximum on the Onset of Forchheimer-Bénard Convection with through flow. J Mines Metals Fuels. 2022; 70(8A):32–40. doi: 10.18311/ jmmf/2022/32007 DOI: https://doi.org/10.18311/jmmf/2022/32007

Vijaya Kumara VM, Aswatha, Banu Prakash Reddy V, Amit Datta D, Balaji V, Ashik AV. A Numerical Investigation of Natural Convection in a Porous Enclosure with Lower Wall Heating. J Mines Metals Fuels. 2023; 70(10A):195–201. doi: 10.18311/jmmf/2022/31225 DOI: https://doi.org/10.18311/jmmf/2022/31225