Mixed Convection of a Hybrid Nanofluid Flow with Variable Thickness Sheet

Jump To References Section

Authors

  • Department of Mathematics, M. S. Ramaiah Institute of Technology, Bangalore - 560054, Karnataka ,IN
  • Department of Mathematics, M. S. Ramaiah Institute of Technology, Bangalore - 560054, Karnataka ,IN
  • Department of Mathematics, M. S. Ramaiah Institute of Technology, Bangalore - 560054, Karnataka ,IN
  • Department of Mathematics, M. S. Ramaiah Institute of Technology, Bangalore - 560054, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/35813

Keywords:

Hybrid Nanofluid, Mixed Convection, Similarity Transformation, Variable Thickness

Abstract

The heat transfers of a hybrid nanofluid flow with steady, mixed convection over a variable thickness is investigated in the present work. The non- linear PDE’s of the physical model are converted into ODE’s by means of suitable similarity transformations. The subsequent ODE’s are solved using MATLAB and shown the effects graphically for the parameters like wall thickness, mixed convection, velocity index for both nf and hnf, Nusselt number and Skin friction for hybrid nf.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-12-20

How to Cite

S. Sushma, M. Uma, B. N. Veena, & N. Srikanth. (2023). Mixed Convection of a Hybrid Nanofluid Flow with Variable Thickness Sheet. Journal of Mines, Metals and Fuels, 71(10), 1561–1569. https://doi.org/10.18311/jmmf/2023/35813

 

References

Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab.(ANL), Argonne, IL (United States); 1995.

Chen L, Yu W, Xie H. Enhanced thermal conductivity of nanofluids containing Ag/MWNT composites. Powder Technology. 2012; 231:18-20. DOI: https://doi.org/10.1016/j.powtec.2012.07.028

Kwak KY, Kim CY. Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Australia Rheology Journal. 2005; 17(2):35-40.

Sundar LS, Singh MK, Sousa AC. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. International Communications in Heat and Mass Transfer. 2005; 44:7-14. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2013.02.014

Hayat T, Nadeem S, Khan AU. Rotating flow of Ag-CuO/ H 2O hybrid nanofluid with radiation and partial slip boundary effects. The European Physical Journal E. 2005; 41(6):1-9. DOI: https://doi.org/10.1140/epje/i2018-11682-y

Zainal NA, Nazar R, Naganthran K, Pop I. MHD mixed convection stagnation point flow of a hybrid nanofluid past a vertical flat plate with convective boundary condition. Chinese Journal of Physics. 2005; 66:630-644. DOI: https://doi.org/10.1016/j.cjph.2020.03.022

Devi SSU, Devi SA. Numerical investigation of threedimensional hybrid Cu–Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Canadian Journal of Physics. 2016; 94(5):490-496. DOI: https://doi.org/10.1139/cjp-2015-0799

Sudarsana Reddy P, Sreedevi P. Entropy generation and heat transfer analysis of magnetic hybrid nanofluid inside a square cavity with thermal radiation. The European Physical Journal Plus. 2021; 136(1):1-33. DOI: https://doi.org/10.1140/epjp/s13360-020-01025-z

Momin GG. Experimental investigation of mixed convection with water-Al 2O3 & hybrid nanofluid in inclined tube for laminar flow. Int. J. Sci. Technol. Res. 2013; 2(12):195-202.

Suresh S, Venkitaraj KP, Selvakumar P. Synthesis, Characterisation of Al 2O3-Cu Nano composite powder and water-based nanofluids. Advanced Materials Research. 2011; 328:1560-1567. DOI: https://doi.org/10.4028/www.scientific.net/AMR.328-330.1560

Chamkha AJ, Miroshnichenko IV, Sheremet MA. Numerical analysis of unsteady conjugate natural convection of hybrid water-based nanofluid in a semicircular cavity. Journal of Thermal Science and Engineering Applications. 2017; 9(4):041004. DOI: https://doi.org/10.1115/1.4036203

Izadi M, Oztop HF, Sheremet MA, Mehryan SAM, AbuHamdeh N. Coupled FHD–MHD free convection of a hybrid nanoliquid in an inversed T-shaped enclosure occupied by partitioned porous media. Numerical Heat Transfer, Part A: Applications. 2019; 76(6):479-498. DOI: https://doi.org/10.1080/10407782.2019.1637626

Arif M, Kumam P, Khan D, Watthayu W. Thermal performance of GO-MoS2/engine oil as Maxwell hybrid nanofluid flow with heat transfer in oscillating vertical cylinder. Case Studies in Thermal Engineering. 2021; 27:101290. DOI: https://doi.org/10.1016/j.csite.2021.101290

Nadeem M, Siddique I, Awrejcewicz J, Bilal M. Numerical analysis of a second-grade fuzzy hybrid nanofluid flow and heat transfer over a permeable stretching/shrinking sheet. Scientific Reports. 2022; 12(1):1-17. DOI: https://doi.org/10.1038/s41598-022-05393-7

Bilal M, Gul T, Alsubie A, Ali I. Axisymmetric hybrid nanofluid flow with heat and mass transfer amongst the two gyrating plates. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik. 2021; 101. DOI: https://doi.org/10.1002/zamm.202000146

Anuar NS, Bachok N, Pop I. Numerical computation of dusty hybrid nanofluid flow and heat transfer over a deformable sheet with slip effect. Mathematics. 2021; 9(6):643. DOI: https://doi.org/10.3390/math9060643

Zaboli M, Ajarostaghi SSM, Saedodin S, Kiani B. Hybrid nanofluid flow and heat transfer in a parabolic trough solar collector with inner helical axial fins as turbulator. The European Physical Journal Plus. 2021; 136(8):841. DOI: https://doi.org/10.1140/epjp/s13360-021-01807-z

Gumber P, Yaseen M, Rawat SK, Kumar M. Heat transfer in micropolar hybrid nanofluid flow past a vertical plate in the presence of thermal radiation and suction/injection effects. Partial Differential Equations in Applied Mathematics. 2022; 5:100240. DOI: https://doi.org/10.1016/j.padiff.2021.100240

Rajesh V, Sheremet MA, Öztop HF. Impact of hybrid nanofluids on MHD flow and heat transfer near a vertical plate with ramped wall temperature. Case Studies in Thermal Engineering. 2021; 28:101557. DOI: https://doi.org/10.1016/j.csite.2021.101557

Khashi’ie NS, Arifin NM, Pop I, Nazar R. Dual solutions of bioconvection hybrid nanofluid flow due to gyrotactic microorganisms towards a vertical plate. Chinese Journal of Physics. 2021; 72:461-474. DOI: https://doi.org/10.1016/j.cjph.2021.05.011

Botha SS, Ndungu P, Bladergroen BJ. Physicochemical properties of oil-based nanofluids containing hybrid structures of silver nanoparticles supported on silica. Industrial & Engineering Chemistry Research. 2011; 50(6):3071-3077. DOI: https://doi.org/10.1021/ie101088x

Lee LL. Boundary layer over a thin needle. The Physics of Fluids. 1967; 10(4):820-822. DOI: https://doi.org/10.1063/1.1762194

Fang T, Zhang J, Zhong Y. Boundary layer flow over a stretching sheet with variable thickness. Applied Mathematics and Computation. 2012; 218(13):7241- 7252. DOI: https://doi.org/10.1016/j.amc.2011.12.094

Subhashini SV, Sumathi R, Pop I. Dual solutions in a thermal diffusive flow over a stretching sheet with variable thickness. International Communications in Heat and Mass Transfer. 2013; 48:61-66. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2013.09.007

Ramesh GK, Prasannakumara BC, Gireesha BJ, Rashidi MM. Casson fluid flow near the stagnation point over a stretching sheet with variable thickness and radiation. Journal of Applied Fluid Mechanics. 2016; 9(3):1115- 1022. DOI: https://doi.org/10.18869/acadpub.jafm.68.228.24584

Samuel N. Triple diffusive flow along a stretching sheet with variable thickness in a porous medium. Acta Tech. 2018; 63:407-422.