Role of Metal Nanoparticles in the Fabrication of Porous Silicon: A Material for Solar Cell Applications

Jump To References Section

Authors

  • Department of Physics, Maharani Cluster University, Bangalore - 560001, Karnataka ,IN
  • Department of Physics, Maharani Cluster University, Bangalore - 560001, Karnataka ,IN
  • Department of Physics, Maharani Cluster University, Bangalore - 560001, Karnataka ,IN
  • Department of Physics, Maharani Cluster University, Bangalore - 560001, Karnataka ,IN
  • Department of Physics, Maharani Cluster University, Bangalore - 560001, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/36244

Keywords:

Metal Nanoparticles, Porous Silicon, Porosity, Refractive Index

Abstract

Metal-Assisted Chemical Etching method (MACE) has emerged as an effective tool to fabricate silicon nanostructures. This technique requires a catalytic mask that is commonly composed of a metal. In the present work, the role of Silver nanoparticles (AgNPs) in the etching mechanism of Porous Silicon (PS) is investigated by studying the effect of AgNP coverage on the surface porosity and the different properties of PS. XRD spectra consist of the two peaks corresponding to silicon and AgNPs respectively and the peak intensity of Ag decreased with an increase in etching time which indicates that as the etching time increases the dissolution of silver metal also increases. Thus, the pore depth depends on the dissolution of AgNP. The pore depth and porosity are calculated at different etching times by SEM analysis. It is observed that porosity is modifiable with the variation of AgNP coverage which in turn modifies the optical properties of PS. The porosity increased with the increase of etching time and the highest porosity obtained was 78% after 240 minutes. The refractive index of PS decreased with increasing porosity in the visible region. The variation of the refractive index results in the tuning of optical energy gap which is more essential in increasing the efficiency of solar cells.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-12-01

How to Cite

Madhavi, K., Vijayakumar, G., Hanumatha Raju, N., Hemalatha, K. S., & Veeranna Gowda, V. C. (2023). Role of Metal Nanoparticles in the Fabrication of Porous Silicon: A Material for Solar Cell Applications. Journal of Mines, Metals and Fuels, 71(12), 2520–2526. https://doi.org/10.18311/jmmf/2023/36244
Received 2024-01-21
Accepted 2024-02-01
Published 2023-12-01

 

References

Bisi O, Ossicini S, Pavesi L. Porous silicon: A quantum sponge structure for silicon-based optoelectronics. Surf Sci Rep. 2000; 38:1-126. https://doi.org/10.1016/S0167-5729(99)00012-6 DOI: https://doi.org/10.1016/S0167-5729(99)00012-6

Lin VSY, Motesharei K, Dancil KPS, Sailor MJ, Ghadiri MR. A porous silicon-based optical interferometric biosensor. Science. 1997; 278:840-3. https://doi.org/10.1126/science.278.5339.840 PMid:9346478 DOI: https://doi.org/10.1126/science.278.5339.840

Canham LT. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett. 1990; 57:1046-8. https://doi.org/10.1063/1.103561 DOI: https://doi.org/10.1063/1.103561

Sailor MJ, Lee EJ. Surface chemistry of luminescent silicon nanocrystallites. Adv Mater. 1997; 9:783-93. https://doi.org/10.1002/adma.19970091004 DOI: https://doi.org/10.1002/adma.19970091004

Canham LT. Bioactive silicon structure fabrication through nano etching techniques. Adv Mater. 1995; 7:1033-7. https://doi.org/10.1002/adma.19950071215 DOI: https://doi.org/10.1002/adma.19950071215

Yae S, Kawamoto Y, Tanaka H, Fukumuro N. Formation of porous silicon by metal particle enhanced chemical etching in HF solution and its application for efficient solar cells. Electrochem Commun. 2003; 5:632-6. https://doi.org/10.1016/S1388-2481(03)00146-2 DOI: https://doi.org/10.1016/S1388-2481(03)00146-2

Sohn H. Handbook of porous silicon, springer. Switzerland; 2014. p. 1-12. https://doi.org/10.1007/978-3-319-04508-5_25-1 DOI: https://doi.org/10.1007/978-3-319-04508-5_25-1

Bruggeman DAG. Effective medium approximation for nonlinear conductivity of a composite medium. Ann Phys. 1935; 24:636-79. https://doi.org/10.1002/andp.19354160705 DOI: https://doi.org/10.1002/andp.19354160705

Looyenga H. Dielectric constants of heterogeneous mixtures. Physica. 1965; 31:401-6. https://doi.org/10.1016/0031-8914(65)90045-5 DOI: https://doi.org/10.1016/0031-8914(65)90045-5

Garnett JCM. Colours in metal glasses, metallic films, and metallic solutions. II. Philos Trans R Soc Lond Soc. 1904; 203:385-420. https://doi.org/10.1098/rsta.1904.0024 DOI: https://doi.org/10.1098/rsta.1904.0024

Tans SJ, Verschueren ARM and Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature. 1998; 393:49-52. https://doi.org/10.1038/29954 DOI: https://doi.org/10.1038/29954

Kolasinski KW, Gogola JW. Rational design of etchants for electroless porous silicon formation. ECS Trans. 2011; 33:23-8. https://doi.org/10.1149/1.3553152 DOI: https://doi.org/10.1149/1.3553152

Hazra P, Jit S. An in-house approach for fabrication of silicon nanowire arrays using electroless metal deposition and etching method. Int J Surf Sci Eng. 2013; 7:285-94. https://doi.org/10.1504/IJSURFSE.2013.056439 DOI: https://doi.org/10.1504/IJSURFSE.2013.056439

Vinila VS, Jacob R, Mony A, Nair HG. X-ray diffraction analysis of nanocrystalline ceramic PbBaTiO3. Sci Res. 2014; 3:57-65. https://doi.org/10.4236/csta.2014.33007 DOI: https://doi.org/10.4236/csta.2014.33007

Peter LM, Blackwood DJ, Pons S. In situ characterization of the illuminated silicon-electrolyte interface by Fourier-transform infrared spectroscopy. Phys Rev Lett. 1989; 62:308-11. https://doi.org/10.1103/PhysRevLett.62.308 PMid:10040199 DOI: https://doi.org/10.1103/PhysRevLett.62.308

Karanam M, Rao MG, Shaik H, Suvarna PR. Study of the properties of the porous silicon synthesized by Ag-assisted chemical etching. Int Lett chem Phys Astron. 2016; 71:40-8. https://doi.org/10.18052/www.scipress.com/ILCPA.71.40 DOI: https://doi.org/10.18052/www.scipress.com/ILCPA.71.40

Lakshmipriya V, Jeyakumaran N, Kumaran P. Structural properties of porous silicon layers - Influence of etching time. Int J Chemtech Res. 2014; 6:5261-4.

Alfeel F, Awad F, Qamar F. Tunable optical properties of porous silicon. J Basic Sci. 2014; 30:41-51.

Verhoeven JW. Glossary of terms used in photochemistry. Pure Appl Chem. 1996; 68:2223-86. https://doi.org/10.1351/pac199668122223 DOI: https://doi.org/10.1351/pac199668122223

Mortezaali A, Sani RS, Jooni JF. Correlation between porosity of porous silicon and optoelectronic properties. J Non-oxide Glasses. 2009; 1:293-9.

Ravindra NM, Auluck S, Srivastava VK. On the Penn gap in semiconductors. Phy Status Solidi b. 1979; 93:155-60. https://doi.org/10.1002/pssb.2220930257 DOI: https://doi.org/10.1002/pssb.2220930257

Kenny N, Kannewurf CR, Whitmore DH. Optical absorption coefficients of vanadium pentoxide single crystals. J Phys Chem Solids. 1996; 27:1237-46. https://doi.org/10.1016/0022-3697(66)90007-2 DOI: https://doi.org/10.1016/0022-3697(66)90007-2

Most read articles by the same author(s)