Innovative Strategies for Coal/Lignite Beneficiation with Progressive RAMDARS Technology Integration

Jump To References Section

Authors

  • Department of Mining Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah – 711103, West Bengal ,IN
  • Department of Mining Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah – 711103, West Bengal ,IN
  • Department of Mining Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah – 711103, West Bengal ,IN

DOI:

https://doi.org/10.18311/jmmf/2024/41774

Keywords:

Comparative Analysis, Energy Production Strategies, Environmental Impact, Lignite Beneficiation, RAMDARS Technology

Abstract

Coal and lignite, essential to worldwide energy production, cause emissions and ash management issues. Coal/lignite beneficiation is promising for economic and environmental advantages. This literature review and empirical study examines its effects on emissions reduction, pollution management, and ash handling efficiency. The sustainable solution research assesses emissions reduction methods and reveals hidden benefits like ecological benefits. The findings support coal/lignite beneficiation in energy production and inform policymakers, energy producers, and environmental stakeholders. This study discusses contemporary beneficiation technologies, including RAMDARS, and suggests a promising energy future. Combining detailed research and a case study shows the industry's revolutionary potential. A bright perspective beyond technological development emphasizes the sector's preparedness to contribute significantly to a sustainable energy future through continual innovation, cooperation, and RAMDARS integration.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-05-31

How to Cite

Kumar, D., Singh, K., & Mukhopadhyay, S. (2024). Innovative Strategies for Coal/Lignite Beneficiation with Progressive RAMDARS Technology Integration. Journal of Mines, Metals and Fuels, 72(3), 235–242. https://doi.org/10.18311/jmmf/2024/41774

Issue

Section

Articles
Received 2024-02-29
Accepted 2024-05-14
Published 2024-05-31

 

References

Cozzi L, Gould T, Bouckart S, Crow D, Kim TY, McGlade C, Olejarnik P, Wanner B, Wetzel D. World energy outlook 2020. Paris, France: International Energy Agency; 2020. p. 1-461.

Omer AM. Energy, environment and sustainable development. Renew Sustain Energy Rev. 2008; 12(9):2265-300. https://doi.org/10.1016/j.rser.2007. 05.001 DOI: https://doi.org/10.1016/j.rser.2007.05.001

Board OS. Negative emissions technologies and reliable sequestration: A research agenda. National Academies of Sciences, Engineering, and Medicine; 2019.

Arzaghi M, Squalli J. The environmental impact of fossil fuel subsidy policies. Energy Econ. 2023; 126:106980. https://doi.org/10.1016/j.eneco.2023.106980 DOI: https://doi.org/10.1016/j.eneco.2023.106980

Rajaram V, Dutta S, Parameswaran K, editors. Sustainable mining practices: A global perspective. CRC Press; 2005. https://doi.org/10.1201/9781439834237 DOI: https://doi.org/10.1201/9781439834237

Christensen JM, Olhoff A. Lessons from a decade of emissions gap assessments; 2019.

Pandey B, Gautam M, Agrawal M. Greenhouse gas emissions from coal mining activities and their possible mitigation strategies. In Environmental carbon footprints. Butterworth-Heinemann; 2018. p. 259-294. https://doi.org/10.1016/B978-0-12-812849-7.00010-6 PMCid:PMC5845732. DOI: https://doi.org/10.1016/B978-0-12-812849-7.00010-6

Rystad J. The Global Energy Landscape; 2019.

Chikkatur AP, Sagar AD, Sankar TL. Sustainable development of the Indian coal sector. Energy. 2009; 34(8):942-53. https://doi.org/10.1016/j. energy.2008.12.014 DOI: https://doi.org/10.1016/j.energy.2008.12.014

Lei R, Feng S, Lauvaux T. Country-scale trends in air pollution and fossil fuel CO2 emissions during 2001- 2018: Confronting the roles of national policies and economic growth. Environ Res Lett. 2020; 16(1):014006. https://doi.org/10.1088/1748-9326/abc9e1 DOI: https://doi.org/10.1088/1748-9326/abc9e1

Pehnt M, Henkel J. Life cycle assessment of carbon dioxide capture and storage from lignite power plants. Int J Greenhouse Gas Control. 2009; 3(1):49-66. https:// doi.org/10.1016/j.ijggc.2008.07.001 DOI: https://doi.org/10.1016/j.ijggc.2008.07.001

Punia A. Carbon dioxide sequestration by mines: Implications for climate change. Climatic Change. 2021; 165(1-2):10. https://doi.org/10.1007/s10584-021- 03038-8 DOI: https://doi.org/10.1007/s10584-021-03038-8

Kittner N, Fadadu RP, Buckley HL, Schwarzman MR, Kammen DM. Trace metal content of coal exacerbates air-pollution-related health risks: The case of lignite coal in Kosovo. Environ Sci Technol. 2018; 52(4):2359-67. https://doi.org/10.1021/acs.est.7b04254 PMid:29301089 DOI: https://doi.org/10.1021/acs.est.7b04254

Kumar D, Kumar D. Sustainable management of coal preparation. Woodhead Publishing; 2018. https://doi. org/10.1016/B978-0-12-812632-5.00018-5

Laskowski JS. Coal preparation; 2001. https://doi. org/10.1016/S0167-4528(01)80003-X

Karakurt I, Aydin G, Aydiner K. Mine ventilation air methane as a sustainable energy source. Renew Sustain Energy Rev. 2011; 15(2):1042-9. https://doi. org/10.1016/j.rser.2010.11.030 DOI: https://doi.org/10.1016/j.rser.2010.11.030

Katalambula H, Gupta R. Low-grade coals: A review of some prospective upgrading technologies. Energ Fuel. 2009; 23(7):3392-405. https://doi.org/10.1021/ef801140t DOI: https://doi.org/10.1021/ef801140t

Jangam SV, Karthikeyan M, Mujumdar AS. A critical assessment of industrial coal drying technologies: Role of energy, emissions, risk and sustainability. Dry Technol. 2011; 29(4):395-407. https://doi.org/10.1080/0 7373937.2010.498070 DOI: https://doi.org/10.1080/07373937.2010.498070

Lockhart NC. Dry beneficiation of coal. Powder Technol. 1984; 40(1-3):17-42. https://doi.org/10.1016/0032- 5910(84)85053-6 DOI: https://doi.org/10.1016/0032-5910(84)85053-6

Mishra BK, Das B, Biswal SK, Reddy PSR. Overview of beneficiation, utilization and environmental issues in relation to coal processing. Proc Indian Natl Sci. 2015; 81(4):725-37. https://doi.org/10.16943/ptinsa/2015/ v81i4/48293 DOI: https://doi.org/10.16943/ptinsa/2015/v81i4/48293

Zhao Y, Yang X, Luo Z, Duan C, Song S. Progress in developments of dry coal beneficiation. Int J Coal Sci Technol. 2014; 1:103-12. https://doi.org/10.1007/ s40789-014-0014-5 DOI: https://doi.org/10.1007/s40789-014-0014-5

Kumar D, Singh K, Mukhopadhyay S. Optimization of dry beneficiation process for lignite using advanced RAMDARS system with VFD, IoT, and vibrating crusher: A case study. J Mines Met Fuels. 2023; 71(11).

Mallet A, Tsenkova R, Muncan J, Charnier C, Latrille É, Bendoula R, Steyer JP, Roger JM, Relating near-infrared light path-length modifications to the water content of scattering media in near-infrared spectroscopy: Toward a new Bouguer-Beer-Lambert law. Anal Chem. 2021; 93(17):6817-23. https://doi.org/10.1021/acs. analchem.1c00811 PMid:33886268 DOI: https://doi.org/10.1021/acs.analchem.1c00811

Ramana GV. ArdeeSort-next generation coal dry beneficiation technology. In XVIII International Coal Preparation Congress. 28 June-01 July 2016; Saint- Petersburg, Russia: Springer International Publishing; 2016. p. 1161-6. https://doi.org/10.1007/978-3-319- 40943-6_182 DOI: https://doi.org/10.1007/978-3-319-40943-6_182

Rao AS.. Technology acceptance model for complex technologies in a period of rapid catching-up; 2007. https://doi.org/10.2139/ssrn.1016012 DOI: https://doi.org/10.2139/ssrn.1016012

Rao DS. Minerals and coal process calculations. CRC Press; 2016.

Shanmugam BK. Vardhan H. Raj MG, Kaza M, Sah R. Evaluation of a new vibrating screen for dry screening fine coal with different moisture contents. Int J Coal Prep Util. 2022; 42(3):752-61. https://doi.org/10.1080/1 9392699.2019.1652170 DOI: https://doi.org/10.1080/19392699.2019.1652170

Xia W, Xie G, Peng Y. Recent advances in beneficiation for low rank coals. Powder Technol. 2015; 277:206-21. https://doi.org/10.1016/j.powtec.2015.03.003 DOI: https://doi.org/10.1016/j.powtec.2015.03.003

Zhu X, Feng P, Wei L. Drying of lignite during beneficiation in the air dense medium fluidized bed under mild conditions. Fuel Process Technol. 2019; 187:28-35. https://doi.org/10.1016/j.fuproc.2019.01.012 DOI: https://doi.org/10.1016/j.fuproc.2019.01.012

Bhatti MA, Mehmood Z, Nasir S. Beneficiation of a low rank coal to produce high quality clean coal. Insights Min Scitechnol. 2021; 2(5):555598.

Bhargava PK, Singha AV, Menaria KL. Beneficiation of low grade lignite of Barmer Rajasthan (India). Int J Chem Sci. 2010; 8(1):301-5.

Dong L, Wang Z, Zhou E, Wang X, Li G, Fan X, Zhang B, Duan C, Chen Z, Luo Z, Jiang H, A novel dry beneficiation process for coal. Int J Coal Prep Util. 2022; 42(4):1105-25. https://doi.org/10.1080/19392699.2019.1 692339 DOI: https://doi.org/10.1080/19392699.2019.1692339

Dwari RK, Rao KH. Dry beneficiation of coal-a review. Miner Process Extr Metall Rev. 2007; 28(3):177-234. https://doi.org/10.1080/08827500601141271 DOI: https://doi.org/10.1080/08827500601141271

Yelverton TL, Brashear AT, Nash DG, Brown JE, Singer CF, Kariher PH, Ryan JV, Burnette P. Characterization of emissions from a pilot-scale combustor operating on coal blended with woody biomass. Fuel. 2020; 264:116774. https://doi.org/10.1016/j.fuel.2019.116774 PMid:33364633 DOI: https://doi.org/10.1016/j.fuel.2019.116774

Esterle JS. Mining and beneficiation. In Applied Coal Petrology. Elsevier; 2008. p. 61-83. https://doi. org/10.1016/B978-0-08-045051-3.00003-8 DOI: https://doi.org/10.1016/B978-0-08-045051-3.00003-8

Goel M. Implementing clean coal technology in India. India Infrastructure Report; 2010.

Kundu T, Das SK, Biswal DK, Angadi SI. Mineral beneficiation and processing of coal. In Clean Coal Technologies: Beneficiation, Utilization, Transport Phenomena and Prospective Cham: Springer International Publishing; 2021. p. 1-38. https://doi. org/10.1007/978-3-030-68502-7_1 DOI: https://doi.org/10.1007/978-3-030-68502-7_1

Oliveira CM, Machado CM, Duarte GW, Peterson M. Beneficiation of pyrite from coal mining. J Clean Prod. 2016; 139:821-7. https://doi.org/10.1016/j. jclepro.2016.08.124 DOI: https://doi.org/10.1016/j.jclepro.2016.08.124