Design and Simulation of Mg and Ti Alloy-based Wheel Nuts for Formula One Cars

Jump To References Section

Authors

  • APJ Abdul Kalam Technological University, Thiruvananthapuram – 695016, Kerala ,IN
  • APJ Abdul Kalam Technological University, Thiruvananthapuram – 695016, Kerala ,IN
  • APJ Abdul Kalam Technological University, Thiruvananthapuram – 695016, Kerala ,IN
  • TKM College of Engineering, Kollam – 691005, Kerala ,IN
  • TKM College of Engineering, Kollam – 691005, Kerala ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/43085

Keywords:

Ansys, Formula One, Magnesium Alloy, Titanium Alloy, Wheel Nut Failure.

Abstract

Formula One is the highest level of globally recognised auto racing for single-seater formula racing vehicles, as sanctioned by the Federation of International Automobiles (FIA). In the Formula One World Championship, the word formula refers to the set of rules that all competing cars must obey. Formula cars are developed with outstanding attributes to survive in high-speed racing. However, issues such as wheel nut failure are common in these vehicles. The wheel nut has to hold the wheel to the car and must resist braking and lateral forces. Titanium alloys are commonly utilized in the manufacture of wheel nuts for Formula One cars, while magnesium alloys are also considered for high-end automobile wheel nuts. In this study, the design of a wheel nut with titanium and magnesium alloys is analyzed using Ansys under uniform and variable stress situations. The results of the analysis showed that titanium alloy is the best-suited material for F1 racing cars. The reasons for the nut failure are also discussed in this paper. The paper contributes to the automotive industry by providing insights into the design and material selection for wheel nuts in high-speed racing cars, specifically Formula One vehicles.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-05-24

How to Cite

Daniel, R. C., Sam, F. G., Thomas, L., Kannan, S., & Ali, M. (2024). Design and Simulation of Mg and Ti Alloy-based Wheel Nuts for Formula One Cars. Journal of Mines, Metals and Fuels, 71(12A), 144–152. https://doi.org/10.18311/jmmf/2023/43085

Issue

Section

Articles

 

References

Formula1.com. In Practice and qualifying, Formula One World Championship [Internet]. n.d. Available from: http://www.formula1.com/inside_f1/rules_and_ regulations/sporting_regulations/8686/

Wikipedia. Formula One [Online]. n.d. [cited 2022 Jun 20]. Available from: https://en.wikipedia.org/w/index. php?title=Formula_One&oldid=1093996068

Mahadik SS. Design and ANSYS analysis of components of wheel assembly of SAE car. Int J Curr Eng Technol. 2018; 8(2). https://doi.org/10.14741/ijcet/v.8.2.36 DOI: https://doi.org/10.14741/ijcet/v.8.2.36

Thomas L, Ali MM, Kumar VNA, Thomas S. Influence of cryogenic and chemical treatment on thermal and physical properties of hemp fabric. IOP Conf Ser Mater Sci Eng. 2021; 1114(1). https://doi.org/10.1088/1757- 899X/1114/1/012080 DOI: https://doi.org/10.1088/1757-899X/1114/1/012080

Todorovic J. Formula One. Fédération Internationale De L’automobile,” Scribd. Available from: https://www. scribd.com/document/364283887/Formula-One

Riesner M, DeVries RI. Finite element analysis and structural optimization of vehicle wheels. SAE International, Warrendale, PA, SAE Technical Paper 830133; 1983. https://doi.org/10.4271/830133 PMid:35494646 DOI: https://doi.org/10.4271/830133

Dalvi A, Khaniya D, Ali S, Tendulkar U, Kashikar A. Design, optimization and manufacturing of wheel assembly system of Formula Society of Automotive Engineers (FSAE) Car. 2020; 10(2):218-27. DOI: https://doi.org/10.2139/ssrn.3346977

Vijay R, Kumar VNA, Sadiq A, Thomas L. Influence of cryogenic treatment on bulk and surface properties of aluminium alloys: A review. Adv Mater Process Technol. 2022; 1-12. https://doi.org/10.1080/23740 68X.2022.2072085

Weishaupt E, Stevenson M, Sprague J. Overload fracture of cast aluminum wheel. J Fail Anal Prev. 2014; 14. https://doi.org/10.1007/s11668-014-9899-y DOI: https://doi.org/10.1007/s11668-014-9899-y

Song W, Woods JL, Davis RT, Offutt JK, Bellis EP, Handler ES, et al. Failure analysis and simulation evaluation of an Al 6061 alloy wheel hub. J Fail Anal Prev. 2015; 15. https://doi.org/10.1007/s11668-015-9969-9 DOI: https://doi.org/10.1007/s11668-015-9969-9

Merlin M, Timelli G, Bonollo F, Garagnani G. Impact behaviour of A356 alloy for low-pressure die casting automotive wheels. J Mater Process Technol. 2009; 209:1060-73. https://doi.org/10.1016/j.jmatprotec. 2008.03.027 DOI: https://doi.org/10.1016/j.jmatprotec.2008.03.027

Poojari M, Kamarthi A, Shetty K, Sanil A, Palan K. Design and analysis of the wheel hub for an all- terrain vehicle with the plastic polymer: Nylon- 6,6. J Mech Eng Res Dev. 2019; 42:119-23. https://doi.org/10.26480/ jmerd.05.2019.119.123 DOI: https://doi.org/10.26480/jmerd.05.2019.119.123

Fischer G, Grubisic VV. Design criteria and durability approval of wheel hubs. SAE International, Warrendale, PA, SAE Technical Paper 982840; 1998. https://doi. org/10.4271/982840 DOI: https://doi.org/10.4271/982840

Vijay R, Kumar VNA, Sadiq A, Sandeep SB. Estimation of thermal stress at the interface of sliding in a pin on disc tribometer using finite element approach. IOP Conf Ser Mater Sci Eng. 2021; 1114(1). https://doi. org/10.1088/1757-899X/1114/1/012051 DOI: https://doi.org/10.1088/1757-899X/1114/1/012051

Dhar S. Fracture analysis of wheel hub fabricated from pressure die cast aluminum alloy. Theor Appl Fract Mech. 1988; 9(1):45-53. https://doi. org/10.1016/0167-8442(88)90047-X DOI: https://doi.org/10.1016/0167-8442(88)90047-X

Shinde T, Chavan R, Savadekar P, Shinde D, Jagtap N. Failure analysis of a wheel hub of formula student racing car. J Inst Eng India Ser D. 2021; 102(1):73-8. https://doi.org/10.1007/s40033-020-00244-z DOI: https://doi.org/10.1007/s40033-020-00244-z

Putatunda SK, Banerjee S. Effect of size on plasticity and fracture toughness. Eng Fract Mech. 1984; 19(3):507- 29. https://doi.org/10.1016/0013-7944(84)90008-0 DOI: https://doi.org/10.1016/0013-7944(84)90008-0

Kaufman JG, Nelson FG. More on specimen size effects in fracture toughness testing. T M Spec Tech Publ Am Soc Test Mater. 1974; 559:74-85. DOI: https://doi.org/10.1520/STP38593S

Brown WF, Jones MH. The influence of crack length and thickness in plane strain fracture toughness tests. American Society for Testing and Materials, Annual Meeting, 71st, San Francisco, CA; 1970. DOI: https://doi.org/10.1520/STP33661S

Zhang H, Zhang H, Zhao X, Wang Y, Li N. Study of thickness effect on fracture toughness of high grade pipeline steel. MATEC Web Conf. 2016; 67. https://doi. org/10.1051/matecconf/20166703016 DOI: https://doi.org/10.1051/matecconf/20166703016

Priest AH. Reappraisal of fracture toughness testing and assessment procedures. In: Valluri SR, Taplin DMR, Rao PR, Knott JF and Dubey R, editors. Fracture 84. Pergamon; 1984. p. 3229-38. https://doi.org/10.1016/ B978-1-4832-8440-8.50345-8 DOI: https://doi.org/10.1016/B978-1-4832-8440-8.50345-8

Pelloux RM. The analysis of fracture surfaces by electron microscopy. Boeing Scientific Research Labs Seattle WA [Internet]. 1963. [cited 2022 Jun 20]. Available from: https://apps.dtic.mil/sti/citations/AD0428452

Jiang Q, Bertolo V, Popovich V, Walters C. Recent developments and challenges of cleavage fracture modelling in steels: Aspects on microstructural mechanics and local approach methods. Proc Int Conf Offshore Mech Arct Eng. 2019. https://doi.org/10.1115/OMAE2019- 95464 DOI: https://doi.org/10.1115/OMAE2019-95464

Sajjan B, Kiran PS, Parthasarathy A, Kumar KNV. Product design and development of wheel hub for an All-Terrain Vehicle (ATV). Int J Eng Res. 2016; V5(08):504-9. https://doi.org/10.17577/IJERTV5IS080413 DOI: https://doi.org/10.17577/IJERTV5IS080413

Shang S. Finite element modeling of dynamic impact and cornering fatigue of cast aluminum and forged magnesium road wheel [dissertation]. Windsor, Ontario, Canada: University of Windsor; 2007.

Kutz M. Mechanical engineers’ handbook, 3rd ed. Hoboken (NJ): Wiley; 2006. https://doi. org/10.1002/0471777447

Bansal H, Kumar S. Weight reduction and analysis of trolley axle using Ansys [Internet]. 2012. [cited 2022 Jun 20]. Available from: https://www.semanticscholar.org/ paper/Weight-Reduction-and-Analysis-of-Trolley- Axle-Using-Bansal-Kumar/2bd9fe8c61bdb5c91d0ebc7 e076ac36930752fff

Mondal S, Ghosh A, Deshpande N. Automobile wheel material selection using multi-objective optimization on the basis of ratio analysis (Moora) method. Int J Res Eng Technol. 2017; 3.

Misra S, Singh A, James E. Analysis of wheel rim - Material and manufacturing aspects. AIP Conf Proc. 2018; 1953(1). https://doi.org/10.1063/1.5033151 DOI: https://doi.org/10.1063/1.5033151

Vijay R, Kumar VNA, Sadiq A, Pillai RR. Numerical analysis of wear characteristics of zirconia coated aluminum 6061 alloy. IOP Conf Ser Mater Sci Eng. 2021; 1059(1). https://doi.org/10.1088/1757-899X/1059/1/012020 DOI: https://doi.org/10.1088/1757-899X/1059/1/012020

Thomas L, Ramachandra M. Advanced materials for wind turbine blade - A Review. Mater. Today Proc. 2018; 5(1). Part 3:2635-40. https://doi.org/10.1016/j. matpr.2018.01.043 DOI: https://doi.org/10.1016/j.matpr.2018.01.043

Most read articles by the same author(s)