Study of Structural and Dielectric Properties of Zirconium Titanate (ZrTiO4) Nano Powder

Jump To References Section

Authors

  • Department of physics, Government First Grade College, Hoskote, Bengaluru Rural-562114 ,IN
  • Department of Chemistry, M.S. Ramaiah Institute of Technology, Bengaluru, Karnataka ,IN
  • Government First Grade College, Yelahanka, Bengaluru - 560064, Karnataka ,IN
  • 3Government First Grade College, Yelahanka, Bengaluru - 560064, Karnataka ,IN
  • Government First Grade College, Yelahanka, Bengaluru - 560064, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/43595

Keywords:

Dielectric Constant, Dielectric Loss, Zirconium Titanate.

Abstract

Zirconium Titanate nano powders synthesized by Polymeric Precursor Method using glycerin as a polymerizing agent were studied to investigate the effect of sintering temperature on structural and dielectric properties. From XRD reports, it is evident that phase formation is dependent on sintering temperature. UV-Visible Spectroscopy reveals that the band gap of the material depends on the structure that can be controlled by temperature. Variation of Dielectric constant (ε) and dielectric loss (tanδ) of the powders were measured for a wide range of frequency from 100Hz to 5MHz. Conductivity properties such as Conductivity and Impedance were studied for the above said frequency range.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-05-24

How to Cite

Sangeetha, A., Nagabhushana, B. M., Divyashree, Chaitra, & Netravathi. (2024). Study of Structural and Dielectric Properties of Zirconium Titanate (ZrTiO<sub>4</sub>) Nano Powder. Journal of Mines, Metals and Fuels, 71(12A), 177–184. https://doi.org/10.18311/jmmf/2023/43595

Issue

Section

Articles

 

References

Vescio G, Crespo-Yepes A, Alonso D, Claramunt S, Porti M, Rodriguez R, Cornet A, Cirera A, Nafria M, Aymerich X. IEEE Electron Device Lett. 2017; 38:457. https://doi.org/10.1109/LED.2017.2668599 DOI: https://doi.org/10.1109/LED.2017.2668599

Mostafa M, Rahman MJ, Choudhury S. Enhanced dielectric properties of BaTiO3 ceramics with cerium doping, manganese doping and Ce-Mn co-doping. Sci Eng Compos Mater. 2019; 26:62–9. https://doi. org/10.1515/secm-2017-0177 DOI: https://doi.org/10.1515/secm-2017-0177

Yao FZ, Yuan O, Wang Q, Wang H. Multiscale structural engineering of dielectric ceramics for energy storage applications: from bulk to thin films. Nanoscale. 2020; 12:17165-84. https://doi.org/10.1039/D0NR04479B DOI: https://doi.org/10.1039/D0NR04479B

Panda M, Mishra A, Shukla P. Efective enhancement of dielectric properties in coldpressed polyvinyledene fuoride/barium titanate nanocomposites. SN Applied Sciences. 2019; 1:230. https://doi.org/10.1007/s42452- 019-0234-9 DOI: https://doi.org/10.1007/s42452-019-0234-9

Uk. P. Reports, SpeciPaul O’Brien, University of Manchester, Nanoscience 1: Nanostructures through Chemistry. vol. DOI: 10.10. 2013.

Kasian P, Thongbai P, Yamwong T, Rujirawat S, Yimnirun R, Maensiri S. The DC bias voltage effect and nonlinear dielectric properties of titanate nanotubes. J Nanosci Nanotech. 2015; 15(11):9197–202. https://doi. org/10.1166/jnn.2015.11406 DOI: https://doi.org/10.1166/jnn.2015.11406

Taeseok K, Jeongmin O, Byungwoo P, Kug Sun H. Dielectric properties and strain analysis in paraelectric ZrTiO4 thin films deposited by DC magnetron sputtering. Jpn J Appl Phys. 2000; 39:4153–7. https://doi.org/10.1143/ JJAP.39.4153 DOI: https://doi.org/10.1143/JJAP.39.4153

Viticoli M, Padeletti G, Kaciulis S, Ingo GM, Pandolfi L, Zaldo C. Structural and dielectric properties of ZrTiO4 and Zr0.8Sn0.2TiO4 deposited by pulsed laser deposition. Materials Science and Engineering B. 2005; 118:87–91. https://doi:10.1016/j.mseb.2004.12.047 DOI: https://doi.org/10.1016/j.mseb.2004.12.047

Newnham RE. Am Cer Soc. 1967; 50:216. https://doi. org/10.1038/scientificamerican0667-50 DOI: https://doi.org/10.1038/scientificamerican0667-50

Al-Azawi MA, Bidin N. Gold nanoparticles synthesized by laser ablation in deionized water. Chinese Journal of Physics. 2015; 53(4). https://doi:10.6122CJP.20150511B.

Asanithi P, Chaiyakun S, Limsuwan P. Growth of silver nanoparticles by DC magnetron sputtering. Journal of Nanomaterials. 2012; 963609:8. https://doi. org/10.1155/2012/963609 DOI: https://doi.org/10.1155/2012/963609

Carneiro JO, Azevedo S, Fernandes F, Freitas E, Pereira M, Tavares CJ, Lanceros-Me´ndez S, Teixeira V. Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties. J Mater Sci. 2014; 49:7476–88. https://doi.org/10.1007/s10853- 014-8453-3 DOI: https://doi.org/10.1007/s10853-014-8453-3

Hu XL, Takai O, Saito N. Synthesis of gold nanoparticles by solution plasma sputtering in various solvents. Journal of Physics: Conference Series. 2013; 417:012030. https://doi.org/10.1088/1742-6596/417/1/012030 DOI: https://doi.org/10.1088/1742-6596/417/1/012030

Virk HS, Sharma P. Chemical route to nanotechnology. International Journal of Advanced Engineering Technology. IJAET. 2010; 1(3):114-29.

Sangeetha A, Sathish KN, Nagabhushana BM, Chikkahanumantharayappa, Jayasankar CK. Red, Green, Blue and IR emitting zirconium Titanate nano composite co-doped with Er3+/Tm3+/Yb3+ synthesized by combustion synthesis. Optical Materials. 2021; 121:111534. https:// doi.org/10.1016/j.optmat.2021.111534 DOI: https://doi.org/10.1016/j.optmat.2021.111534

Sangeetha A, Chikkahanumantharayappa, Nagabhushana BM. Comparative study of photoluminescence of single and mixed phase ZrTiO4 prepared by solution combustion and polymeric precursor method. Journal of Molecular Structure. 2019; 1179:126e131. https://doi. org/10.1016/j.molstruc.2018.10.059 DOI: https://doi.org/10.1016/j.molstruc.2018.10.059

Verma S, Rani S, Kumar S, Majeed Khan MA. Rietveld refinement, micro-structural, optical and thermal parameters of zirconium titanate composites. Ceramics International. 2018; 44(2):1653-61. https://doi. org/10.1016/j.ceramint.2017.10.090 DOI: https://doi.org/10.1016/j.ceramint.2017.10.090

Xu J, Lind C, Wilkinson AP, Pattanik S. X-Ray diffraction and X-ray absorption spectroscopy studies of solgel processed zirconium titanate. Chem Mater. 2000; 12:3347-55. https://doi.org/10.1021/cm000298s DOI: https://doi.org/10.1021/cm000298s

Victor P, Bhattacharyya S, Krupanidhi SB. Dielectric relaxation in laser ablated polycrystalline ZrTiO4 thin films. Journal of Applied Physics. 2003; 94:5135. https:// doi.org/10.1063/1.1606509 DOI: https://doi.org/10.1063/1.1606509

Kim D-S, Park D-H, Kim G-D, Choi S-Y. Dielectric Properties of ZrTiO4 Thin Films Synthesized by Sol- Gel Method. Metals and Materials International. 2004; 10(4):361-5. https://doi.org/10.1007/BF03185986 DOI: https://doi.org/10.1007/BF03185986

Yugandhar B, Dastagiri S, Manjunath V, Lakshmaiah MV. Structural and dielectric properties of PbxZr1-xTiO4 (x=0.1- 0.4) ceramics by solid state reaction method. International Journal of Scientific and Engineering Research. 2019; 10(7). http://www.ijser.org

Dey B, Narzary R, Chouhan L, Bhattacharjee S, Parida BN, Mondal A, Ravi S, Srivastava SK. Crystal structure, optical and dielectric properties of Ag:ZnO compositelike compounds. J Mater Sci: Mater Electron. https://doi. org/10.1007/s10854-021-07560-4

Sahu G, Das M, Yadav M, Sahoo BP, Tripathy J. Dielectric relaxation behavior of silver nanoparticles and graphene oxide embedded poly(vinyl alcohol) nanocomposite film: an effect of ionic liquid and temperature. Polymers. 2020; 12(2):374. https://doi. org/10.3390/polym12020374 DOI: https://doi.org/10.3390/polym12020374

Mohanty B, Parida BN, Parida RK. Mater Chem Phys. 2019; 225:91–8. https://doi.org/10.1016/j. matchemphys.2018.12.076 DOI: https://doi.org/10.1016/j.matchemphys.2018.12.076