Schiff Base Metal Organic Frameworks for Biological Applications - A Review

Jump To References Section

Authors

  • Department of Chemistry, Mangalore University, Mangalore-574199, Karnataka ,IN
  • Department of Biotechnology and Genetics, M. S. Ramaiah College of Arts, Science and Commerce, Bangalore - 560054, Karnataka ,IN
  • Department of Chemistry, M. S. Ramaiah Institute of Technology (Affiliated to VTU), Bangalore – 560054, Karnataka ,IN
  • Department of Chemistry, M. S. Ramaiah College of Arts, Science and Commerce, Bangalore – 560054, Karnataka ,IN
  • Department of Chemistry, Angadi Institute of Technology and Management (AITM), Belagavi - 5800321, Karnataka ,IN
  • Department of Chemistry, M. S. Ramaiah University of Applied Sciences, Bangalore – 560058, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/43604

Keywords:

Biological Activities, Metal Organic Frameworks, Schiff Base.

Abstract

Schiff bases are the organic compounds which are prepared by condensation method with aldehyde and amine derivatives. These have wide range of applications in chemistry due to their binding property with metal ions. Schiff base alone and Schiff base metal complexes have vital applications in inorganic, organic, medicinal and material sciences. Binding properties of Schiff bases can form the network with metal ions which leads to Metal Organic Frameworks (MOF’s). This review covers the detailed recent progress of Schiff base-based metal organic frameworks for various biological applications like, antibacterial, antifungal, anticancer, anti-inflammatory, DNA binding, DNA interaction and drug delivery studies.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-05-24

How to Cite

Kamat, V., Pant, G., Yallur, B. C., Prasanna Kumar, S. G., Adimule, V. M., & Batakurki, S. R. (2024). Schiff Base Metal Organic Frameworks for Biological Applications - A Review. Journal of Mines, Metals and Fuels, 71(12A), 421–431. https://doi.org/10.18311/jmmf/2023/43604

Issue

Section

Articles

 

References

Vigato PA, Tamburini S. Coord Chem Rev. 2004; 248:1717. https://doi.org/10.1016/j.cct.2003.09.003

Salvat A, Antonnacci L, Fortunato RH, Suarez EY, Godoy HM. Lett Appl Microbiol. 2001; 32:293. https://doi. org/10.1046/j.1472-765X.2001.00923.x

Abd-Elzaher MM, Labib AA, Mousa HA, Moustafa SA, Ali MM, El-Rashedy AA. J Basic Appl Sci. 2016; 5:85. https:// doi.org/10.1016/j.bjbas.2016.01.001

Nong W, Wu J, Ghiladi RA, Guan Y. The structural appeal of metal-organic frameworks in antimicrobial applications. Coord Chem Rev. 2021; 442:214007. https://doi. org/10.1016/j.ccr.2021.214007

Pettinari C, Pettinari R, Di Nicola C, Tombesi A, Scuri S, Marchetti F. Antimicrobial MOFs Coord Chem Rev. 2021; 446:214121. https://doi.org/10.1016/j.ccr.2021.214121

Chinthamreddy A, Karreddula R, Pitchika GK, SurendraBabu MS. Synthesis, characterization of [Co(BDC) (Phen)H2O] and [Co(BDC)(DABCO)] MOFs, π-π interactions, Hirshfeld surface analysis and biological activity. J Inorg Organomte Polym Mater. 2021; 31(3):1381. https:// doi.org/10.1007/s10904-020-01800-6

Johari NA, Yusof N, Ismail AF, Aziz F, Salleh WNW, Jaafar J, Hairon NHH, Misdan N. The application of ferric metal organic framework for dye removal: a mini review. J Adv Res Fluid Mech Sci. 2020; 75(1):68. https://doi.org/10.37934/ arfmts.75.1.6880

Cai W, Gao H, Ghu C, Wang X, Wang J, Zhang P, Lin G, Li W, Liu G, Chen X. Engineering phototheranostic nanoscale metal organic frameworks for multimodal imaging guided cancer therapy. ACS Appl Mater Interfaces. 2017; 9(3):2040. https://doi.org/10.1021/acsami.6b11579

Gecgel C, Simsek UB, Turabik M, Ozdemir S. Synthesis of titanium doped iron-based metal organic frameworks and investigation of their biological activities. J Inorg Oragnomet Polym Mater. 2020; 30(3):749. https://doi. org/10.1007/s10904-019-01329-3

Lin S, Liu X, Tan L, Cui Z, Yang X, Yeung KWK, Pan H, Wu S. Porous iron-carboxylate metal organic framework: a novel bioplatform with sustained antibacterial efficacy and nontoxicity. ACS Appl Mater Interfaces. 2017; 9(22):19248. https://doi.org/10.1021/acsami.7b04810

Green M, Liu Z, Xiang P, Tan X, Huang F, Liu L, Chen X. Ferric metal organic framework for microwave absorption. Mater Today Chem. 2018; 9:140. https://doi.org/10.1016/j. mtchem.2018.06.003

De Vita J, Samuel VT, Steven H. Cancer e Principles and Practice of Oncology, 7th edn., New York: Lippincott Williams and Wilkins; 2005.

Thomas PS, Vinay K. editors, Robbins Basic Pathology, 8th ed., Philadelphia: Saunders; 2007.

Dongfang XU, Shuzhi MA, Guangying DU, Qizhuang HE, Dazhi SUN. J Rare Earths. 2008; 26:643. https://doi. org/10.1016/S1002-0721(08)60153-2

Hajrezaie M, Paydar M, Moghadamtousi SZ, Hassandarvish P, Gwaram NS, Zahedifard M, Rouhollahi E, Karimian H, Looi CY, Ali HM, Majid NA, Abdulla MA. Sci World J. 2014; 540463. https://doi.org/10.1155/2014/540463

Ozaslan M, Karagoz ID, Kilic IH, Guldur ME. Afr J Biotechnol. 2011; 10:2375.

Ahamad MN, Iman K, Raza MK, Kumar M, Ansari A, Ahmad M, Shahid M. Bioorg Chem. 2020; 95:103561. https://doi.org/10.1016/j.bioorg.2019.103561

Mahmoud WH, Deghadi RG, Mohamed GG. Arabian J Chem. 2020; 13:5390. https://doi.org/10.1016/j.arabjc.2020.03.017

Rao NN, Kishan E, Gopichand K, Nagaraju R, Ganai AM, Rao PV. Chem Data Coll. 2020; 27:100368. https://doi. org/10.1016/j.cdc.2020.100368

John L, Joseyphus RS, Joe IH. SN Appl Sci. 2020; 2:500. https://doi.org/10.1007/s42452-020-2274-6

Selami D, Turkmen DAB, Dilek NT, Ahmet CB, Mustafa BC, Ertugrul K, Ferda, Bulent D, Fikrettin S. Anti-Cancer Drugs. 2017; 28:869.

Prasad MSNA, Neeraja G, Kumar BA, Rao KM, Babu BK, Birudu RB. J Chem Pharm Sci. 2017; 10:1406.

Taubes G. The bacteria fight back. Science 321, 356, Nong W, Wu J, Ghiladi RA, Guan Y. The structural appeal of metal– organic frameworks in antimicrobial applications. Coord Chem Rev. 2008; 442:214007. https://doi.org/10.1016/j. ccr.2021.214007

Pettinari C, Pettinari R, Di Nicola C, Tombesi A, Scuri S, Marchetti F. Antimicrobial MOFs Coord Chem Rev. 2021; 446:214121. https://doi.org/10.1016/j.ccr.2021.214121

Alhaddad M, Sheta SM. Dual naked-eye and optical chemosensor for morphine detection in biological real samples based on Cr(III) metal−organic framework nanoparticles. ACS Omega. 2020; 5:28296–304. https://doi.org/10.1021/ acsomega.0c04249

Osman DI, El-Sheikh SM, Sheta SM, Ali OI, Salem AM, Shousha WG, El-Khamisy SF, Shawky SM. Nucleic acids biosensors based on Metal-Organic Framework (MOF): paving the way to clinical laboratory diagnosis. Biosens Bioelectron. 2019; 141:111451. https://doi.org/10.1016/j.bios.2019.111451

Fridkin SK, JarvisWR. Epidemiology of nosocomial fungal infections. Clin Microbiol Rev. 1996; 9:499–511. https:// doi.org/10.1128/CMR.9.4.499

Nelson PE, Dignani MC, Anaissie EJ. Taxonomy, biology and clinical aspects of Fusarium species. Clin Microbiol Rev. 1994; 7:479–504. https://doi.org/10.1128/CMR.7.4.479

Chellaian JD, Jijo. J Spectrochim Acta Part A. 2014; 118:624- 31. https://doi.org/10.1016/j.saa.2013.09.007

Nayan HB, Pratik KT, Pankaj MS, Vrajlal KG, Viresh HS. J Saudi Chem Soc. 2015; 21(5):517-27.

Muhammad A, Itrat A, Nighat A, Rashad M, Ajaz H, Tanveer HB, Muhammed TH, Haq N, Muhammed K. J Saudi Chem Soc. 2015; 19(3):322-6.

Wyszogrodzka G, Marszałek B, Gil B, Dorozyński P. Metalorganic frameworks: mechanisms of antibacterial action and potential applications. Drug Discov Today. 2016; 21(6):1009. https://doi.org/10.1016/j.drudis.2016.04.009

Ubale PA, Shiva PK, Nishad A, Bansode PA, Sanjay NJ, Sanjay S, Vasant BH. Mitni preparation, spectroscopic characterization, theoretical investigations, and in vitro anticancer activity of Cd(II), Ni(II), Zn(II), and Cu(II) complexes of 4(3H)- quinazolinone-derived schiff base. Molecules. 2020; 25:5973. https://doi.org/10.3390/molecules25245973

Hassan AM, Osman Said A, Heakal BH, Younis A, Abdelmoaz MA, Abdrabou MM. Conventional and microwave- assisted synthesis, antimicrobial and antitumor studies of tridentate schiff base derived from O-vanillin and phenyl urea and its complexes. Adv J Chem Sect A. 2020; 3:621−38.

Zayed EM, Hindy AMM, Mohamed GG. Coordination behaviour, molecular docking, density functional theory calculations and biological activity studies of some transition metal complexes of bis-Schiff base ligand. Appl Organomet Chem. 2019; 33:e4525. https://doi.org/10.1002/ aoc.4525

El-Sonbati AZ, Mahmoud WH, Mohamed GG, Diab MA, Morgan SM, Abbas SY. Synthesis, characterization of Schiff base metal complexes and their biological investigation. Appl Organomet Chem. 2019; 33:e5048. https://doi. org/10.1002/aoc.5048

Elsayed SA, El-Gharabawy HM, Butler IS, Atlam FM. Novel metal complexes of 3-acetylcoumarin-2-hydrazinobenzothiazole Schiff base: Design, structural characterizations, DNA binding, DFT calculations, molecular docking and biological studies. Appl Organomet Chem. 2020; 34:e5643. https://doi.org/10.1002/aoc.5643

Tsaturyan A, Machida Y, Akitsu T, Gozhikova I, Shcherbakov I. Binaphthyl-containing Schiff base complexes with carboxyl groups for dye sensitized solar cell: An experimental and theoretical study. J Mol Struct. 2018; 1162:54−62. https://doi.org/10.1016/j.molstruc.2018.02.082

Raczuk E, Dmochowska B, Samaszko-Fiertek J, Madaj J. Different schiff bases—structure, importance and classification. Molecules. 2022; 27:787. https://doi.org/10.3390/ molecules27030787

Saeed SES, Alhakimi AN. Synthesis, characterization of Lanthanum mixed ligand complexes based on benzimidazole derivative and the effect of the added ligand on the antimicrobial, and anticancer activities. J Nat Sci Math (JNSM). 2022; 15:35–53.

da Silva CM, da Silva DL, Modolo L, Alves RB, de Resende MA, Martins CV, de Fátima Â. Schiff bases: A short review of their antimicrobial activities. J Adv Res. 2011; 2:1–8. https://doi.org/10.1016/j.jare.2010.05.004

Naureen B, Miana GA, Shahid K, Asghar M, Tanveer S, Sarwar A. Iron (III) and zinc (II) monodentate Schiff base metal complexes: Synthesis, characterisation and biological activities. J Mol Struct. 2021; 1231:129946. https://doi. org/10.1016/j.molstruc.2021.129946

Yılmaz Baran N, Saçak M. Preparation of highly thermally stable and conductive Schiff base polymer: Molecular weight monitoring and investigation of antimicrobial properties. J Mol Struct. 2018; 1163:22−32. https://doi. org/10.1016/j.molstruc.2018.02.088

Kaczmarek MT, Zabiszak M, Nowak M, Jastrzab R. Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord Chem Rev. 2018; 370:42−54. https://doi.org/10.1016/j.ccr.2018.05.012

Dhahagani K, Kesavan MP, Gujuluva Gangatharan Vinoth K, Ravi L, Rajagopal G, Rajesh J. Crystal structure, optical properties, DFT analysis of new morpholine based Schiff base ligands and their copper(II) complexes: DNA, protein docking analyses, antibacterial study and anticancer evaluation. Mater Sci Eng C. 2018; 90:119−30. https://doi. org/10.1016/j.msec.2018.04.032

Wang Y-Y, Xu F-Z, Zhu Y-Y, Song B, Luo D, Yu G, Chen S, Xue W, Wu J. Pyrazolo[3,4-d]pyrimidine derivatives containing a Schiff base moiety as potential antiviral agents. Bioorg Med Chem Lett. 2018; 28:2979−84. https://doi. org/10.1016/j.bmcl.2018.06.049

Hassan A, Said A. Importance of the applicability of O-Vanillin Schiff base complexes. Adv J Chem Sect. A. 2020; 4:87−103.

Puckett CA, Ernst RJ, Barton JK. Exploring the cellular accumulation of metal complexes. Dalton Trans. 2010; 39:1159−70. https://doi.org/10.1039/B922209J

Samanta T, Roymahapatra G, Porto WF, Seth S, Ghorai S, Saha S, Sengupta J, Franco OL, Dinda J, Mandal SM. N, N΄-Olefin functionalized bis-imidazolium gold (I) salt is an efficient candidate to control keratitis-associated eye infection. PLoS One. 2013; 8:e58346. https://doi.org/10.1371/ journal.pone.0058346

Anti-inflammatory and antioxidant effects of nano formulations composed of metal-organic frameworks delivering rutin and/or piperine natural agents.

Qi X, Tian H, Dang X, Fan Y, Zhanga, Zhao H. A bimetallic Co/Mn metal–organic-framework with a synergistic catalytic effect as peroxidase for the colorimetric detection of H2O2. Anal Methods. 2019; 11:1111–24. https://doi. org/10.1039/C8AY02514B

Clough AJ, Skelton JM, Downes CA, de la Rosa AA, Yoo JW, Aron W, et al. Metallic conductivity in a two-dimensional cobalt dithiolene metal–organic framework. J Am Chem Soc. 2017; 139:10863–7. https://doi.org/10.1021/jacs.7b05742

Long J. Luminescent schiff-base lanthanide single-molecule magnets:the association betweeen optical and magnetic properties. Front. Chem. 2019; 7:63. https://doi. org/10.3389/fchem.2019.00063

Dong Z, Sun Y, Chu J, Zhang X, Deng H. Multivariate metal–organic frameworks for dialing-in the binding and programming the release of drug molecules. J Am Chem Soc. 2017; 139:14209–16. https://doi.org/10.1021/ jacs.7b07392

Zhang T, Manna K, Lin W. Metal–organic frameworks stabilize solution-inaccessible cobalt catalysts for highly efficient broad-scope organic transformations. J Am Chem Soc. 2016; 138:3241–9. https://doi.org/10.1021/jacs.6b00849

Yang L, Xu C, Ye W, Liu W. An electrochemical sensor for H2O2 based on a new Co-metal-organic framework modified electrode. Sens Actuators B Chem. 2015; 215:489–96. https://doi.org/10.1016/j.snb.2015.03.104

Freitas AR, Rubira AF, Muniz EC. Polychloroprene degradation by photo-fenton. Conductivity measures as new approach for detecting/evaluation of degradation products. J Polym Environ. 2010; 18:668–73. https://doi.org/10.1007/ s10924-010-0226-8

Kumar K, Stefa´nczyk O, Chorazy S, Nakabayashi K, Sieklucka B, Ohkoshi S-I. Effect of noble metals on luminescence and single-molecule magnet behavior in the cyanido-bridged Ln–Ag and Ln–Au (Ln = Dy, Yb, Er) complexes. Inorg Chem. 2019; 58:5677–87. https://doi. org/10.1021/acs.inorgchem.8b03634

Wu DF, Liu Z, Ren P, Liu XH, Wang N, Cui JZ, et al. A new family of dinuclear lanthanide complexes constructed from an 8-hydroxyquinoline Schiff base and b-diketone: magnetic properties and near-infrared luminescence. Dalton Trans. 2019; 48:1392-403. 60. https://doi.org/10.1039/ C8DT04384A

Tang Y, Feng Y, Gan X, Tan M, Yu K. Preparation and structure of [bis (8-quinolyloxyethyl)ether· H3+O]3[La(NO3)6]: A hexanitrato lanthanum complex of a hydronium ion podand complex cation. Polyhedron. 1996; 15:3219–23. https://doi.org/10.1039/C8DT04384A

Elemike EE, Oviawe AP, Otuokere IE. Potentiation of the antimicrobial activities of 4-benzylimino-2,3-dimethyl- 1-phenylpyrazol-5-one by metal chelation. Research Journal of Chemical Science. 2011; 1(8):6–11.

Raman N, Kulandaisamy A, Thanagaraja C, Manisankar P, Viswanathan S, Vedhi C. Synthesis, structural characterisation and electrochemical and antibacterial studies of Schiff base copper complexes. Transition Metal Complexes. 2004; 29(2):129–35. https://doi.org/10.1023/ B:TMCH.0000019409.50574.0a

Raman N, Johnson RS. Synthesis and spectral characterisation of mixed ligand complexes derived from 2-chlorobenzaldehyde,4-aminoantipyrine and 1,10-phenathroline. Asian J Spectrosc. 2007; 11(1):35- 41. https://doi. org/10.4489/MYCO.2007.35.2.065

Beigi Z, Kianfar AH, Farrokhpour H, Roushani M, Azarian MH, Mahmood WAK. Synthesis, characterization and spectroscopic studies of nickel (II) complexes with some tridentate ONN donor Schiff bases and their electrocatalytic application for oxidation of methanol. Journal of Molecular Liquids. 2018; 249:117–25. https://doi.org/10.1016/j.molliq. 2017.10.131

Beigi Z, Kianfar AH, Mohammadnezhad G, Görls H, Plass W. Palladium (II) complexes with diaminomaleonitrile- based Schiff base ligands: Synthesis, characterization and application as Suzuki-Miyaura coupling catalysts. Polyhedron. 2017; 134:65–72. https://doi.org/10.1016/j. poly.2017.06.009

Chorpra JR, Uppal D, Arrora US, Gupta SK. Synthesis and spectral studies of Cu(II) complexes of 4[N-(2-hydroxy- 1-naphthalidene)amino]antipyrine. Asian J Chem. 2000; 12:1277–81.

Al-Zoubi W. Solvent extraction of metal ions by use of Schiff bases. Journal of Coordination Chemistry. 2013; 66(13):2264– 89. https://doi.org/10.1080/00958972.2013.803536

Xiong WW, Zhang Q. Angew Chem Int Ed. 2015; 54:11616- 11623. https://doi.org/10.1002/anie.201502277

Lei B, Wang M, Jiang Z, Qi W, Su R, He Z. ACS Appl Mater Interfaces. 2018; 10:16698-16706. https://doi.org/10.1021/ acsami.7b19693

Ling D, Li H, Xi W, Wang Z, Bednarkiewicz A, Dibaba ST, Shi L, Sun L. Heterodimers made of metal-organic frameworks and upconversion nanoparticles for bioimaging and pH responsive dual-drug delivery. Journal of Materials Chemistry B. 2020; 1-29. https://doi.org/10.1039/ C9TB02753J

Karami A, Mohamed O, Ahmed A, Husseini GA, Sabouni R. Recent advances in metal-organic frameworks as anticancer drug delivery systems: a review. Anti-Cancer Agents in Medicinal Chemistry. 2021; 21(18):2487-504. https:// doi.org/10.2174/1871520621666210119093844

Leng X, Dong X, Wang W, Sai N, Yang C, You L, Huang H, Yin X, Ni J. Biocompatible fe-based micropore metalorganic frameworks as sustained-release anticancer drug carriers. Molecules. 2018; 23(10):2490. https://doi. org/10.3390/molecules23102490

Liang S, Wu X-L, Xiong J, Zong M-H, Lou W-Y. Metalorganic frameworks as novel matrices for efficient enzyme immobilization: an update review. Coord Chem Rev. 2020; 406:213149. https://doi.org/10.1016/j.ccr.2019.213149

Terzopoulou A, Hoop M, Chen XZ, Hirt AM, Charilaou M, Shen Y, Mushtaq F, Del Pino AP, Logofatu C, Simonelli L, de Mello AJ, Doonan CJ, Sort J, Nelson BJ, Pané S, Puigmartí- Luis J. Mineralization-inspired synthesis of magnetic zeolitic imidazole framework composites. Angew Chem Int Ed Engl. 2019; 58(38):1355013555. https://doi.org/10.1002/ anie.201907389

Sethi K, Sharma S, Roy I. Nanoscale iron carboxylate metal organic frameworks as drug carriers for magnetically aided intracellular delivery. RSC Advances. 2016; 6(80):76861-6. https://doi.org/10.1039/C6RA18480D

Lei B, Wang M, Jiang Z, Qi W, Su R, He Z. Constructing redoxresponsive metal-organic framework nanocarriers for anticancer drug delivery. ACS Appl Mater Interfaces. 2018; 10(19):16698-706. https://doi.org/10.1021/acsami.7b19693

Zeng J-Y, Zhang M-K, Peng M-Y, Gong D, Zhang X-Z. Porphyrinic metal-organic frameworks coated gold nanorods as a versatile nanoplatform for combined photodynamic/photothermal/ chemotherapy of tumor. Adv Funct Mater. 2018; 28(8):1705451. https://doi.org/10.1002/adfm.201705451

Most read articles by the same author(s)