Structural and Dielectric Properties of Cux Zn1-x Fe2O4 (x = 0.2, 0.6, 0.8) Nano Particles

Jump To References Section

Authors

  • Department of Physics, M. S. Ramaiah University of Applied Sciences, Bengaluru-560058 ,IN
  • Department of Physics, Indian institute of Science, Bengaluru - 560012, Karnataka ,IN
  • Department of Physics, School of Engineering, Presidency University, Bengaluru - 560089, Karnataka ,IN
  • Department of Physics, Indian institute of Science, Bengaluru - 560012, Karnataka ,IN
  • Department of Physics, M. S. Ramaiah University of Applied Sciences, Bengaluru – 560058, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/43612

Keywords:

Auto Combustion, Dielectric, Ferrites, Mining, Nyquist Plot.

Abstract

Researchers widely investigate multi-ferrite nanoparticles due to their fascinating magnetic and electrical properties with satisfactory thermal and chemical stabilities. In the present work CuxZn1-xFe2O4(x = 0.2, 0.6, 0.8) were synthesized using the auto combustion method. The spinel structure of the prepared samples was verified using XRD. The compositional dependent dielectric and ac conductivity studies were performed using impedance spectroscopy technique. The dielectric properties, such as complex dielectric constant and impedance, have been studied as a function of frequency. Changes of dielectric loss tangent (tan δ) with the frequency have been studied to get information about the energy dispersed inside the materials. The ac conduction study, as a function of frequency, suggests the hopping conduction mechanism at the higher frequencies. From the complex impedance spectra (Nyquist plots or Cole-Cole plots), On the real axis, we identified a dispersion as opposed to a centered semicircle. This suggests a relaxation type other than Debye. The dielectric dispersion observed at lower frequencies can be explained using Koop’s phenomenological theory. Since many gases are released during mining and the investigated Cu2Fe2O4 is known to be an excellent gas sensor, this study helps to use it effectively in the mining sector.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-05-24

How to Cite

Georgi, A. D., Fernandes, B. J., Srinivas Reddy, G., Ramesh, K. P., & Mallikarjunaiah, K. J. (2024). Structural and Dielectric Properties of Cu<sub>x</sub> Zn<sub>1-x</sub> Fe<sub>2</sub>O<sub>4</sub> (x = 0.2, 0.6, 0.8) Nano Particles. Journal of Mines, Metals and Fuels, 71(12A), 200–207. https://doi.org/10.18311/jmmf/2023/43612

Issue

Section

Articles

 

References

Zaki HM, Al-Heniti SH, Elmosalami TA. Structural, magnetic and dielectric studies of copper substituted nano-crystalline spinel magnesium zinc ferrite. J Alloys Compd. 2015; 633:104–14. https://doi.org/10.1016/j. jallcom.2015.01.304

Manjunatha M, Reddy GS, Mallikarjunaiah KJ, Ramesh KP. Effect of aluminium substitution in magnetically affluent inverse spinel ferrites studied via 57Fe-Internal field NMR. J Mol Struct. 2020 Jun 5; 1209. https://doi. org/10.1016/j.molstruc.2020.127956

Mujasam Batoo K. Study of dielectric and impedance properties of Mn ferrites. Physica B Condens Matter. 2011; 406(3):382–7. https://doi.org/10.1016/j. physb.2010.10.075

Amin N, Hasan MS, Majeed Z, Latif Z, un-Nabi MA. Structural, electrical, optical and dielectric properties of yttrium substituted cadmium ferrites prepared by Co-Precipitation method. Ceram Int. 2020; 46(13):20798–809. https://doi.org/10.1016/j.ceramint. 2020.05.079

Kaur M, Kaur N, Vibha. Ferrites: Synthesis and Applications for Environmental Remediation. In: ACS Symp Ser Am Chem Soc. 2016; 113–36. https://doi. org/10.1021/bk-2016-1238.ch004

Ghodake UR, Chaudhari ND, Kambale RC, Patil JY, Suryavanshi SS. Effect of Mn2+ substitution on structural, magnetic, electric and dielectric properties of Mg-Zn ferrites. J Magn Magn Mater. 2016; 407:60–8. https://doi.org/10.1016/j.jmmm.2016.01.022

Tahir Farid HM, Ahmad I, Ali I, Mahmood A, Ramay SM. Structural and dielectric properties of copper-based spinel ferrites. Eur Phys J Plus. 2018; 133(2). https://doi. org/10.1140/epjp/i2018-11832-4

Dutrizac JE. The leaching of sulphide minerals in chloride media. Hydrometallurgy. 1992; 29. https://doi. org/10.1016/0304-386X(92)90004-J

Wang, Weixing, Zhenghe X, J. Finch. Fundamental study of an ambient temperature ferrite process in the treatment of acid mine drainage. Environ Sci Technol. 1996; 30(8):2604–8. https://doi.org/10.1021/es960006h

Igarashi T, Herrera PS, Uchiyama H, Miyamae H, Iyatomi N, Hashimoto K, et al. The two-step neutralization ferrite-formation process for sustainable acid mine drainage treatment: Removal of copper, zinc and arsenic, and the influence of coexisting ions on ferritization. Sci Tot Environ. 2020; 715. https://doi.org/10.1016/j. scitotenv.2020.136877

Chapelle A, El Younsi I, Vitale S, Thimont Y, Nelis T, Presmanes L, et al. Improved semiconducting CuO/ CuFe2O4 nanostructured thin films for CO2 gas sensing. Sens Actuators B Chem. 2014; 204:407–13. https://doi. org/10.1016/j.snb.2014.07.088

Haija MA, Ayesh AI, Ahmed S, Katsiotis MS. Selective hydrogen gas sensor using CuFe2O4 nanoparticle based thin films. Appl Surf Sci. 2016; 369:443–7. https://doi. org/10.1016/j.apsusc.2016.02.103

Ranjith Kumar E, Siva Prasada Reddy P, Sarala Devi G, Sathiyaraj S. Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M=Zn, Cu, Ni, and Co) ferrite nanoparticles. J Magn Magn Mater. 2016; 398:281–8. https://doi.org/10.1016/j.jmmm.2015.09.018

Verma K, Kumar A, Varshney D. Effect of Zn and Mg doping on structural, dielectric and magnetic properties of tetragonal CuFe2O4. Curr Appl Phys. 2013; 13(3):467–73. https://doi.org/10.1016/j.cap.2012.09.015

Cutmore NG, Liu Y, Middleton AG. ore characterization and sorting. Miner Eng. 1997; 10(4):421-6. https:// doi.org/10.1016/S0892-6875(97)00018-6

Zaki HM. Temperature dependence of dielectric properties for copper doped magnetite. J Alloys Compd. 2007; 439(1–2):1–8. https://doi.org/10.1016/j.jallcom. 2006.08.084

Karanjkar MM, Tarwal NL, Vaigankar AS, Patil PS. Structural, Mössbauer and electrical properties of nickel cadmium ferrites. Ceram Int. 2013; 39(2):1757–64. https://doi.org/10.1016/j.ceramint.2012.08.022

Joshi JH, Kanchan DK, Joshi MJ, Jethva HO, Parikh KD. Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Mater Res Bull. 2017; 93:63–73. https:// doi.org/10.1016/j.materresbull.2017.04.013

Manjunatha K, Jagadeesha Angadi V, Jeevan Fernandes B, Parthasarathy Ramesh K. Synthesis and Study of Structural and Dielectric Properties of Dy-Ho Doped Mn-Zn Ferrite Nanoparticles. In: Ferrites - Synthesis and Applications. Intech Open. 2021. https://doi. org/10.5772/intechopen.99264

Bhoyar DN, Somvanshi SB, Nalle PB, Mande VK, Pandit AA, Jadhav KM. Multiferroic Fe3+ ion doped BaTiO3 perovskite nanoceramics: Structural, optical, electrical and dielectric investigations. In: Journal of Physics: Conference Series. IOP Publishing Ltd; 2020. https:// doi.org/10.1088/1742-6596/1644/1/012058

Iwauchi K. Dielectric properties of fine particles of Fe3O4 and some ferrites. Japanese Journal of Applied Physics. 1971; 10(11):1520. https://doi.org/10.1143/JJAP.10.1520

Khan SB, Irfan S, Lee SL. Influence of Zn+2 doping on nibased nanoferrites; (Ni1−x ZnxFe2O4). Nanomater. 2019; 9(7). https://doi.org/10.3390/nano9071024

Lukichev AA. Nonlinear relaxation functions. Physical meaning of Jonscher’s power law. J Non Cryst Solids. 2016; 442:17–21. https://doi.org/10.1016/j.jnoncrysol. 2016.02.027

Koops CG. On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audiofrequencies. Phys Rev. 1951; 83. https://doi. org/10.1103/PhysRev.83.121

Hegde SS, Jeevan Fernandes B, Talapatadur V, Ramesh KP, Ramesh K. Impedance spectroscopy analysis of SnS chalcogenide semiconductors. Mater Today Proc. 2022; 62:5648–52. https://doi.org/10.1016/j. matpr.2022.04.966

Gutierrez-Amador MP, Valenzuela R. Effects of grain size distribution on Cole-Cole plots of polycrystalline spinels. MRS Online Proceedings Library (OPL). 2001; 699. https://doi.org/10.1557/PROC-699-R3.1