Chemically Modified Screen-Printed Electrodes: An Electrochemical Interface for Nitrite Ions

Jump To References Section

Authors

  • Department of Chemistry, Siddaganga Institute of Technology, Affiliated to VTU, Belgaum, Tumakuru - 572 103, Karnataka ,IN
  • Department of Chemical Engineering, Siddaganga Institute of Technology, Affiliated to VTU, Belgaum, Tumakuru - 572 103, Karnataka ,IN
  • Department of Chemical Engineering, Siddaganga Institute of Technology, Affiliated to VTU, Belgaum, Tumakuru - 572 103, Karnataka ,IN
  • Manchester Metropolitan University, Faculty of Science and Engineering, Manchester ,GB

DOI:

https://doi.org/10.18311/jmmf/2023/45512

Keywords:

Cyclic Voltammetry, Nitrite, Real Samples, Sensor, Zinc Oxide.

Abstract

A sensitive and selective nanostructured zinc oxide-based chemically modified screen-printed electrode as an electrochemical interface for the electroanalytical determination of nitrite ions at trace concentration level is demonstrated. Zinc oxide nanoparticles were synthesized through a green chemical approach. The resulting particles have been thoroughly analyzed using spectroscopic techniques. The aqueous colloidal solution of well-characterized NPs is prepared and subsequently applied in the chemical modification of screen-printed electrodes. Electrochemical techniques have been to explore the electrochemical nature of the chemically modified interface. Cyclic voltammetry was used to decipher activity for the electro-oxidation of nitrite and differential pulse voltammetry has been used to achieve lower detection limits. The developed sensor showed a dynamic range of up to 800 μM with a detection limit of 0.5 μM. Finally, the long-range analytical applicability has been validated by determining the nitrite levels from various real samples like borewell and sewage water, orange, sweet lemon, tomato, and egg samples. The sensor showed good stability with a deviation of ± 7 %.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-12-30

How to Cite

Kempegowda, R. G., Gokavi, R. B., Shadakhara Murthy, K. R., & Banks, C. E. (2023). Chemically Modified Screen-Printed Electrodes: An Electrochemical Interface for Nitrite Ions. Journal of Mines, Metals and Fuels, 71(12B), 43–51. https://doi.org/10.18311/jmmf/2023/45512

Issue

Section

Articles

 

References

Bahadoran Z, Mirmiran P, Jeddi S, Azizi F, Ghasemi A, Hadaegh F. Nitrate and nitrite content of vegetables, fruits, grains, legumes, dairy products, meats and processed meats. Journal of Food Composition and Analysis. 2016; S0889157516300795. https://doi.org/10.1016/j.jfca.2016.06.006 DOI: https://doi.org/10.1016/j.jfca.2016.06.006

Walse SS, Mitch WA. Nitrosamine carcinogens also swim in chlorinated pools. Environmental Science and Technology. 2008; 42(4):1032–7. https://doi.org/10.1021/es702301p DOI: https://doi.org/10.1021/es702301p

Szczesny-Malysiak E, Dybas J, Blat A, Bulat K, Kus K, Kaczmarska M, Wajda A, Malek K, Chlopicki S, Marzec KM. Irreversible alterations in the hemoglobin structure affect oxygen binding in human-packed red blood cells. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2020; 1867(11):118803. https://doi.org/10.1016/j. bbamcr.2020.118803 DOI: https://doi.org/10.1016/j.bbamcr.2020.118803

Fytianos K, Christophoridis C. Nitrate, arsenic and chloride pollution of drinking water in Northern Greece. Elaboration by Applying GIS. 2004; 93(1-3):55–67. https:// doi.org/10.1023/B:EMAS.0000016791.73493.aa DOI: https://doi.org/10.1023/B:EMAS.0000016791.73493.aa

Singh P, Beg YR, Nishad GR. A review of spectroscopic methods for determination of nitrite and nitrate in environmental samples. Talanta. 2018; S0039914018308397. https://doi.org/10.1016/j.talanta.2018.08.028 DOI: https://doi.org/10.1016/j.talanta.2018.08.028

Menon S, Mathew MR, Sam S, Keerthi K, Kumar KG. Recent advances and challenges in electrochemical biosensors for emerging and re-emerging infectious diseases. Journal of Electroanalytical Chemistry. 2020; 878:114596. https://doi. org/10.1016/j.jelechem.2020.114596 DOI: https://doi.org/10.1016/j.jelechem.2020.114596

Hecht DS, Hu L, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. 2011; 23(13):1482–513. https:// doi.org/10.1002/adma.201003188 DOI: https://doi.org/10.1002/adma.201003188

Jaiswal N, Tiwari I, Foster CW, Banks CE. Highly sensitive amperometric sensing of nitrite utilizing bulk modified MnO2 decorated Graphene oxide nanocomposite screenprinted electrodes. Electrochimica Acta. 2017; 227:255–66. https://doi.org/10.1016/j.electacta.2017.01.007 DOI: https://doi.org/10.1016/j.electacta.2017.01.007

Langley CE, Šljukic B, Banks CE, Compton RG. Manganese dioxide graphite composite electrodes: application to the electroanalysis of hydrogen peroxide, ascorbic acid and nitrite. Analytical Sciences. 2007; 23(2):165–70. https://doi. org/10.1016/j.electacta.2017.01.007 DOI: https://doi.org/10.2116/analsci.23.165

Squissato A, Munoz R, Banks C, Richter E. An overview of recent electroanalytical applications utilizing screenprinted electrodes within flow systems. Chemelectrochem. 2020; 7(10):2211-21. https://doi.org/10.1002/ celc.202000175 DOI: https://doi.org/10.1002/celc.202000175

Banks CE, Pierini G, Foster C, Fernández H, Neale S. A facile electrochemical intercalation and microwave-assisted exfoliation methodology applied to screen-printed electrochemical- based sensing platforms to impart improved electroanalytical outputs. The Analyst. 2018. 10.1039. C7AN01982C

Metters JP, Kadara RO, Banks CE. Electroanalytical properties of screen-printed graphite microband electrodes. 2012; 169. https://doi.org/10.1016/j.snb.2012.04.045 DOI: https://doi.org/10.1016/j.snb.2012.04.045

Tajik S, Askari MB, Ahmadi SA, Nejad FG, Dourandish Z, Razavi R, Beitollahi H, Di Bartolomeo A. Electrochemical sensor based on ZnFe2O4/RGO nanocomposite for ultrasensitive detection of hydrazine in real samples. Nanomaterials. 2022; 12(3):491. https://doi.org/10.3390/ nano12030491 DOI: https://doi.org/10.3390/nano12030491

Raghu GK, Binnal P, Murthy KRS. Zinc oxide nanostructured material for sensor application. Crimson Publishers. 2021; 3(1):5. https://doi.org/10.22259/2637-5362.0501004 DOI: https://doi.org/10.22259/2637-5362.0501004

Ghorbani H, Mehr F, Pazoki H, Rahmani B. Synthesis of ZnO nanoparticles by precipitation method. Oriental Journal of Chemistry. 2015; 31(2):1219–21. https://doi. org/10.13005/ojc/310281 DOI: https://doi.org/10.13005/ojc/310281

Es’haghi Z, Mohammadian M, Hooshmand S. Green and chemical synthesis of zinc oxide nanoparticles and size evaluation by UV–vis spectroscopy. Journal of Nanomedicine Research. 2018; 7(1):52-8. https://doi.org/10.15406/ jnmr.2018.07.00175 DOI: https://doi.org/10.15406/jnmr.2018.07.00175

Zsuzsa AM, Andreas A, Andreas H. Effect of sample preparation on the thermal degradation of metal-added biomass. 2012; 94. https://doi.org/10.1016/j.jaap.2011.12.008 DOI: https://doi.org/10.1016/j.jaap.2011.12.008

Rajashekara S, Shrivastava A, Sumhitha S, et al. Biomedical applications of biogenic zinc oxide nanoparticles manufactured from leaf extracts of Calotropis gigantea (L.) Dryand. BioNanoSci. 2020; 10:654–71. https://doi.org/10.1007/ s12668-020-00746-w DOI: https://doi.org/10.1007/s12668-020-00746-w

Janaki AC, Sailatha E, Gunasekaran S. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015; 144:17–22. https://doi.org/10.1016/j. saa.2015.02.041 DOI: https://doi.org/10.1016/j.saa.2015.02.041

Sivasubramanian R, Sangaranarayanan MV. Electrochemical sensing of nitrite ions using tin-sub microparticles modified glassy carbon electrodes. Electroanalysis. 2014; 26(11):2358–64. https://doi.org/10.1016/j.saa.2015.02.041 DOI: https://doi.org/10.1002/elan.201400259

Sivasubramanian R, Sangaranarayanan MV. A facile formation of silver dendrites on indium tin oxide surfaces using electrodeposition and amperometric sensing of hydrazine. Sensors and Actuators B: Chemical. 2015; 213:92–101. https://doi.org/10.1016/j.snb.2015.02.065 DOI: https://doi.org/10.1016/j.snb.2015.02.065

Rajith Kumar CR, Betageri VS, Nagaraju G, Pujar GH, Suma BP, Latha MS. Photocatalytic, nitrite sensing and antibacterial studies of facile bio-synthesized nickel oxide nanoparticles. Journal of Science: Advanced Materials and Devices. 2020; S2468217920300113. https://doi. org/10.1016/j.snb.2015.02.065 DOI: https://doi.org/10.1016/j.jsamd.2020.02.002

Ramakrishnappa T, Sureshkumar K, Pandurangappa M. Copper oxide impregnated glassy carbon spheres based electrochemical interface for nitrite/nitrate sensing. Materials Chemistry and Physics. 2020; 122744. https://doi. org/10.1016/j.matchemphys.2020.122744 DOI: https://doi.org/10.1016/j.matchemphys.2020.122744

Suma BP, Pandurangappa M. Graphene oxide/copper terephthalate composite as a sensing platform for nitrite quantification and its application to environmental samples. Journal of Solid-State Electrochemistry. 2019. https:// doi.org/10.1007/s10008-019-04454-8 DOI: https://doi.org/10.1007/s10008-019-04454-8

Chelaghmia M, Fisli H, Nacef M, Brownson D, Affoune A, Satha H, Banks C. Disposable non-enzymatic electrochemical glucose sensors based on screen-printed graphite macro electrodes modified via a facile methodology with Ni, Cu, and Ni/Cu hydroxides are shown to accurately determine glucose in real human serum blood samples. Analytical Methods. 2021; 13. https://doi.org/10.1039/ D1AY00056J DOI: https://doi.org/10.1039/D1AY00056J

Kung C-W, Chang T-H, Chou L-Y, Hupp JT, Farha OK, Ho K-C. Porphyrin-based metal-organic framework thin films for electrochemical nitrite detection. Electrochemistry Communications. 2015; 58:51–6. https://doi.org/10.1016/j. elecom.2015.06.003 DOI: https://doi.org/10.1016/j.elecom.2015.06.003

Yang X, Tang Y, Wei M, Chen L, Liu Q, Wang P, Wu Q, Wang C, Zhang M. A facile design of nucleocapsid-like Au@NiO@CuO nanocomposites with MWCNT for glucose sensing. Journal of Electroanalytical Chemistry. 2019; S1572665719302474. https://doi.org/10.1016/j.jelechem.2019.03.078 DOI: https://doi.org/10.1016/j.jelechem.2019.03.078

Kempahanumakkagari S, Kumar V, Samaddar P, Kumar P, Ramakrishnappa T, Kim K-H. Biomolecule-embedded metal-organic frameworks as an innovative sensing platform. Biotechnology Advances. 2018; S0734975018300144. https://doi.org/10.1016/j.biotechadv.2018.01.014 DOI: https://doi.org/10.1016/j.biotechadv.2018.01.014

Li D, Wang T, Li Z, Xu X, Wang C, Duan Y. Application of graphene-based materials for detection of nitrate and nitrite in water — A review. Sensors. 2019; 20(1):54. https:// doi.org/10.3390/s20010054 DOI: https://doi.org/10.3390/s20010054

Suma BP, Adarakatti PS, Kempahanumakkagari SK, Malingappa P. A new polyoxometalate/rGO/Pani composite modified electrode for electrochemical sensing of nitrite and its application to food and environmental samples. Materials Chemistry and Physics. 2019; S0254058419301828. https://doi.org/10.1016/j.matchemphys. 2019.02.087 DOI: https://doi.org/10.1016/j.matchemphys.2019.02.087

Patri S, Malingappa P, Adarakatti P. Silver nanoparticleschitosan composite embedded graphite screen-printed electrodes as a novel electrochemical platform in the measurement of trace level nitrite: application to milk powder samples. Current Analytical Chemistry. 2018; 14. https:// doi.org/10.2174/1573411014666180703142146 DOI: https://doi.org/10.2174/1573411014666180703142146