Continuous Wavelet Transform based Crack Detection in a Metallic Shaft

Jump To References Section

Authors

  • Government Engineering College, Jamui – 811313, Bihar ,IN
  • Purnea College of Engineering, Purnea – 854301, Bihar ,IN
  • Government Engineering College, Jamui – 811313, Bihar ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/45543

Keywords:

Continuous Wavelet Transform, Metal Crack, Operating Deflection Shape, Shaft.

Abstract

In metals, the probability of fatigue crack initiation is significant in high load and high-speed machinery. Once the crack is initiated, it will grow with time and cause critical failure to the system. The condition based monitoring or predictive maintenance of the metallic shaft is essential before the crack reaches its critical size. The presence of excessive measurement noise increases the complexity to detect the crack; hence, there is a need of crack detection algorithm to detect the crack in the presence of excessive measurement noise. In the present work a Continuous Wavelet Transform (CWT) based algorithm is used to locate the crack in metallic shaft. Finite element analysis is used to generate the Operating Deflection Shape (ODS) of the shaft. The presence of crack in the shaft creates additional slope discontinuity in the shaft’s ODS. This slope discontinuity is more dominant near the first natural frequency. However, exciting the shaft near the first natural frequency is hazardous. In order to make the algorithm more robust the excitation nearby the natural frequency is avoided. The CWT-based algorithm is developed to locate the crack by using the ODS at very low excitation frequency.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-12-30

How to Cite

Kumar, B., Kumar, R., & Kumar, R. (2023). Continuous Wavelet Transform based Crack Detection in a Metallic Shaft. Journal of Mines, Metals and Fuels, 71(12B), 143–150. https://doi.org/10.18311/jmmf/2023/45543

Issue

Section

Articles

 

References

Dimarogonas AD. Vibration of cracked structures: A state of the art review. Eng Fract Mech. 1996; 55(5):831-57. https://doi.org/10.1016/0013-7944(94)00175-8 DOI: https://doi.org/10.1016/0013-7944(94)00175-8

Sabnavis G, Kirk RG, Kasarda M, Quinn D. Cracked shaft detection and diagnostics: A literature review. Shock Vib Dig. 2004; 36(4):287. DOI: https://doi.org/10.1177/0583102404045439

Papadopoulos CA. The strain energy release approach for modeling cracks in rotors: A state of the art review. Mech Syst Signal Proc. 2008; 22(4):763-89. https://doi. org/10.1016/j.ymssp.2007.11.009 DOI: https://doi.org/10.1016/j.ymssp.2007.11.009

Gounaris GD, Papadopoulos CA, Dimarogonas AD. Crack identification in beams by coupled response measurements. Comput Struct. 1996; 58(2):299-305. https:// doi.org/10.1016/0045-7949(95)00142-4 DOI: https://doi.org/10.1016/0045-7949(95)00142-4

Sekhar AS, Mohanty AR, Prabhakar S. Vibrations of cracked rotor system: Transverse crack versus slant crack. J Sound Vib. 2005; 279(3-5):1203-17. https://doi. org/10.1016/j.jsv.2004.01.011 DOI: https://doi.org/10.1016/j.jsv.2004.01.011

Kumar R, Singh SK. A variance-based approach for the detection and localization of cracks in a beam. Structures. 2022 Oct 1 (Vol. 44, pp. 1261-1277). Elsevier. https://doi.org/10.1016/j.istruc.2022.08.068 DOI: https://doi.org/10.1016/j.istruc.2022.08.068

Hadjileontiadis LJ, Douka E, Trochidis A. Crack detection in beams using kurtosis. Comput Struct. 2005; 83(12-13):909-19. https://doi.org/10.1016/j.compstruc. 2004.11.010 DOI: https://doi.org/10.1016/j.compstruc.2004.11.010

Adams RD, Cawley P, Pye CJ, Stone BJ. A vibration technique for non-destructively assessing the integrity of structures. J Mech Eng Sci. 1978; 20(2):93-100. https:// doi.org/10.1243/JMES_JOUR_1978_020_016_02 DOI: https://doi.org/10.1243/JMES_JOUR_1978_020_016_02

Pandey AK, Biswas M, Samman MM. Damage detection from changes in curvature mode shapes. J Sound Vib. 1991;145(2):321-32. https://doi.org/10.1016/0022- 460X(91)90595-B DOI: https://doi.org/10.1016/0022-460X(91)90595-B

Kumar R, Singh SK. Crack detection near the ends of a beam using wavelet transform and high resolution beam deflection measurement. Eur J Mech - A/Solids. 2021; 88:104259. https://doi.org/10.1016/j.euromechsol. 2021.104259 DOI: https://doi.org/10.1016/j.euromechsol.2021.104259

Sekhar AS. Crack identification in a rotor system: A model-based approach. J Sound Vib. 2004; 270(4-5):887- 902. https://doi.org/10.1016/S0022-460X(03)00637-0 DOI: https://doi.org/10.1016/S0022-460X(03)00637-0

Han J-G, Ren W-X, Sun Z-S. Wavelet packet based damage identification of beam structures. Internat J Solids Struct. 2005; 42(26):6610-27. https://doi.org/10.1016/j. ijsolstr.2005.04.031 DOI: https://doi.org/10.1016/j.ijsolstr.2005.04.031

Rucka M, Wilde K. Application of continuous wavelet transform in vibration based damage detection method for beams and plates. J Sound Vib. 2006; 297(3-5):536- 50. https://doi.org/10.1016/j.jsv.2006.04.015 DOI: https://doi.org/10.1016/j.jsv.2006.04.015

Kumar R, Nigam R, Singh SK. Selection of suitable mother wavelet along with vanishing moment for the effective detection of crack in a beam. Mech Syst Signal Proc. 2022; 163:108136. https://doi.org/10.1016/j. ymssp.2021.108136 DOI: https://doi.org/10.1016/j.ymssp.2021.108136

Douka E, Loutridis S, Trochidis A. Crack identification in plates using wavelet analysis. J Sound Vib. 2004; 270(1-2):279-95. https://doi.org/10.1016/S0022- 460X(03)00536-4 DOI: https://doi.org/10.1016/S0022-460X(03)00536-4

Rucka M, Wilde K. Crack identification using wavelets on experimental static deflection profiles. Eng Struct. 2006; 28(2):279-88. https://doi.org/10.1016/j.engstruct. 2005.07.009 DOI: https://doi.org/10.1016/j.engstruct.2005.07.009

Rucka M. Damage detection in beams using wavelet transform on higher vibration modes. J Oret Appl Mech. 2011; 49(2):399-417.

Richardson MH. Is it a mode shape, or an operating deflection shape? Sound Vibrat. 1997; 31(1):54-67.

Babu TR, Sekhar AS. Detection of two cracks in a rotorbearing system using amplitude deviation curve. J Sound Vib. 2008; 314(3-5):457-64. https://doi.org/10.1016/j. jsv.2008.03.011 DOI: https://doi.org/10.1016/j.jsv.2008.03.011

Rao JS. Rotor dynamics. New Age International Publishers; 1996.

Clough RW, Penzien H. Dynamics of structures. McGraw-Hill Computers and Structures Inc.; 1995.

Papadopoulos CA, Dimarogonas AD. Coupled longitudinal and bending vibrations of a rotating shaft with an open crack. J Sound Vib. 1987; 117(1):81-93. https://doi. org/10.1016/0022-460X(87)90437-8 DOI: https://doi.org/10.1016/0022-460X(87)90437-8