Microstructural Characterization and Mechanical Properties of LDSS2101 Using Gas Tungsten Arc Welding

Jump To References Section

Authors

  • School of Mechanical Engineering, VIT-AP University, Amaravati - 522237, Andhra Pradesh ,IN
  • School of Mechanical Engineering, VIT-AP University, Amaravati - 522237, Andhra Pradesh ,IN
  • Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat - 395007, Gujarat ,IN
  • Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar 31952 ,SA
  • School of Mechanical Engineering, KIIT Deemed to be University, Bhubaneswar - 751024, Odisha ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/45624

Keywords:

Austenitic Stainless Steel, Duplex Stainless Steel, Lean Duplex Stainless Steel, Microstructure, Scratch Hardness

Abstract

The Lean Duplex Stainless Steels (LDSS) consisting of low alloying element composition are a good alternative in comparison to the Duplex stainless steels and Austenitic stainless steels because of their low cost. These LDSSs are commonly used in nuclear and marine industries, desalination plants, and pressure vessels where enhanced mechanical and corrosion behavior are major requirements. In this paper, LDSS2101 is welded using Gas tungsten arc welding by heat input 0.85 kJ/mm in order to enhance the microstructural and mechanical properties. The influence of the heat input is studied to understand the microstructural characterization using optical microscopy and scanning electron microscope. The mechanical properties such as tensile and impact energy using fracture analysis are examined. Also, the scratch hardness is evaluated and compared with the micro-hardness to understand the performance of weldments. The effect of heat input carried on GTAW of 2101 has led to the significant microstructural evolution in the welded zone with good austenite reformation. The mechanical results of the weldment showed the enhancement in welded zone which is likely suitable for industrial applications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-09-05

How to Cite

Gudikandula, S., Sharma, A., Kumar, A., Sunil, B. R., & Jha, P. (2024). Microstructural Characterization and Mechanical Properties of LDSS2101 Using Gas Tungsten Arc Welding. Journal of Mines, Metals and Fuels, 71(12B), 277–285. https://doi.org/10.18311/jmmf/2023/45624

Issue

Section

Articles

 

References

Poznansky A, Nalbone CS, Crawford JD. The corrosion resistance of 25 Cr--3. 5 Mo--6 Ni and 25 Cr--4. 5 Mo--6 Ni cast duplex stainless steels. Duplex Stainless Steels. 1982; 431-44.

Honeycombe J, Gooch TG. Intergranular attack in welded stress-corrosion resistant stainless steels. Weld J. 1977; 56(11):339s-53s.

Gunn R. Duplex stainless steels: microstructure, properties and applications. Woodhead publishing. 1997. https://doi.org/10.1533/9781845698775 DOI: https://doi.org/10.1533/9781845698775

Paulraj P, Garg R. Effect of welding parameters on mechanical properties of GTAW of UNS S31803 and UNS S32750 weldments. Manufacturing Review. 2015; 2:29. https://doi.org/10.1051/mfreview/2015032 DOI: https://doi.org/10.1051/mfreview/2015032

Tynell M. Applicability range for a high-strength duplex stainless steel in deep sour oil and gas wells. Journal of Materials for Energy Systems. 1983; 5(2):84-7. https://doi.org/10.1007/BF02833533 DOI: https://doi.org/10.1007/BF02833533

Miyuki H, Kudo T, Koso M, Miura M, Moroishi, T. 25%Cr containing duplex phase stainless steel for hot seawater applications. Proc. Conf. Duplex Stainless Steels.1983; 95-112.

Alvarez-Armas I. Duplex stainless steels: a brief hitory and some recent alloys. Recent Patents on Mechanical Engineering. 2008; 1(1):51-7. https://doi. DOI: https://doi.org/10.2174/2212797610801010051

org/10.2174/2212797610801010051 8. Fujii K, Fukuya K. Effects of radiation on spinodal decomposition of ferrite in duplex stainless steel. Journal of Nuclear Materials. 2013; 440(1-3):612-6. https://doi.org/10.1016/j.jnucmat.2013.04.072 DOI: https://doi.org/10.1016/j.jnucmat.2013.04.072

Betini EG, Gomes MP, Milagre MX, Machado CD, dos Reis LA, Mucsi CS, Orlando MT, Luz TS, Martinez LG, Rossi JL. Study on welding thermal cycle and residual stress of UNS S32304 duplex stainless steel selected as external shield for a transport packaging of Mo-99. Brazilian Journal of Radiation Sciences. 2019; 7(2A (Suppl.)). https://doi.org/10.15392/bjrs.v7i2A.679 DOI: https://doi.org/10.15392/bjrs.v7i2A.679

Hosseini VA, Wessman S, Hurtig K, Karlsson L. Nitrogen loss and effects on microstructure in multipass TIG welding of a super duplex stainless steel. Materials and Design. 2016; 98:88-97. https://doi.org/10.1016/j.matdes.2016.03.011 DOI: https://doi.org/10.1016/j.matdes.2016.03.011

Valiente Bermejo MA, Karlsson L, Svensson LE, Hurtig K, Rasmuson H, Frodigh M, Bengtsson P. Effect of shielding gas on welding performance and properties of duplex and super duplex stainless steel welds. Welding in the World. 2015; 59:239-49. https://doi.org/10.1007/s40194-0140199-7 DOI: https://doi.org/10.1007/s40194-014-0199-7

Gong W, Wang P, Zhang L, Jiang Z. Effects of Ce on microstructure and mechanical properties of LDX2101 duplex stainless steel. Metals. 2020; 10(9):1233. https://doi.org/10.3390/met10091233 DOI: https://doi.org/10.3390/met10091233

Jiang WY, Feng YC, Wang LP, Wang JQ, Zhou PC, Guo EJ. Effect of RE content on microstructure and properties of Cr25Ni5Mo2Cu3REx duplex stainless steel. Xitu (Chinese Rare Earths). 2013; 34(2):56-60.

Westin EM, Olsson CO, Hertzman S. Weld oxide formation on lean duplex stainless steel. Corrosion Science. 2008; 50(9):2620-34. https://doi.org/10.1016/j.corsci.2008.06.024 DOI: https://doi.org/10.1016/j.corsci.2008.06.024

Ouali N, Khenfer K, Belkessa B, Fajoui J, Cheniti B, Idir B, Branchu S. Effect of heat input on microstructure, residual stress, and corrosion resistance of UNS 32101 lean duplex stainless steel weld joints. Journal of Materials Engineering and Performance. 2019; 28:4252-64. https://doi.org/10.1007/s11665-019-04194-w DOI: https://doi.org/10.1007/s11665-019-04194-w

Liljas M, Johansson P, Liu HP, Olsson CO. Development of a lean duplex stainless steel. steel research international. 2008; 79(6):466-73. https://doi.org/10.1002/srin.200806154 DOI: https://doi.org/10.1002/srin.200806154

Westin EM. Welds in the lean duplex stainless steel LDX 2101: effect of microstructure and weld oxides on corrosion properties (Doctoral dissertation, KTH).

Tseng KH, Chou CP. The effect of pulsed GTA welding on the residual stress of a stainless-steel weldment. Journal of Materials Processing Technology. 2002; 123(3):346-53. https://doi.org/10.1016/S0924-0136(02)00004-3 DOI: https://doi.org/10.1016/S0924-0136(02)00004-3

Gudikandula S, Sharma A. Study of heat input effects on the microstructure of lean Duplex 2101 shielded metal arc weld and its effect on mechanical properties, corrosion, and scratch behavior. Metallography, Microstructure, and Analysis. 2023; 12(5):834-48. https://doi.org/10.1007/ s13632-023-01001-w DOI: https://doi.org/10.1007/s13632-023-01001-w

Gudikandula S, Sharma A. Microstructural behaviour and corrosion analysis of lean duplex stainless steel 2101 under the influence of variable heat inputs using gas tungsten arc welding. Iranian Journal of Materials Science and Engineering. 2022; 19(4).

Sharma A, Gudikandula S. The effects of heat inputs on LDSS 2101 GTAW and SMAW weld microstructure and mechanical behaviour. Archives of Metallurgy and Materials. 2024; 69(2): 685-97. https://doi.org/10.24425/ amm.2024.149798 DOI: https://doi.org/10.24425/amm.2024.149798

Verma J, Taiwade RV. Effect of welding processes and conditions on the microstructure, mechanical properties and corrosion resistance of duplex stainless-steel weldments- A review. Journal of Manufacturing Processes. 2017; 25:134-52. https://doi.org/10.1016/j.jmapro.2016.11.003 DOI: https://doi.org/10.1016/j.jmapro.2016.11.003

Muthupandi V, Srinivasan PB, Seshadri SK, Sundaresan S. Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds. Materials Science and Engineering: A. 2003; 358(1-2):9-16. https:// doi.org/10.1016/S0921-5093(03)00077-7 DOI: https://doi.org/10.1016/S0921-5093(03)00077-7

Kundurti SC, Sharma A. Evaluation of microstructural, mechanical and corrosion behaviours of laminated AA6061/AA7075 metal matrix composites build by friction stir additive manufacturing for structural applications. Materials Research. 2023; 26:e20230176. https://doi.org/10.1590/1980-5373-mr-2023-0176 DOI: https://doi.org/10.1590/1980-5373-mr-2023-0176

Kundurti SC, Sharma A, Tambe P, Kumar A. Fabrication of surface metal matrix composites for structural applications using friction stir processing-a review. Materials Today: Proceedings. 2022; 56:1468-77. https://doi.org/10.1016/j.matpr.2021.12.337 DOI: https://doi.org/10.1016/j.matpr.2021.12.337

Vardhan VS, Sharma A. Investigating the degradation behaviour of grain refined WE43 magnesium alloy produced by friction stir processing for medical implant applications. Journal of Mines, Metals and Fuels. 2023; 71(12).

Pasha SK, Sharma A, Tambe P. Mechanical properties and tribological behaviour of Al7075 metal matrix composites: A review. Materials Today: Proceedings. 2022; 56:1513-21. https://doi.org/10.1016/j.matpr.2022.01.102 DOI: https://doi.org/10.1016/j.matpr.2022.01.102

Harsha VS, Sharma A, Tambe P. Graphene oxide reinforced epoxy nanocomposites coatings for corrosion protection: a review. In Journal of Physics: conference series. 2022; 2225(1):12002. IOP Publishing. https://doi.org/10.1088/1742-6596/2225/1/012002 DOI: https://doi.org/10.1088/1742-6596/2225/1/012002

Prasad MD, Sharma A, Tambe P. Graphene nanoribbons reinforced polymer nanocomposites and its applications: a review. In Journal of Physics: Conference Series. 2022; 2225(1):012004. IOP Publishing. https://doi.org/10.1088/1742-6596/2225/1/012004 DOI: https://doi.org/10.1088/1742-6596/2225/1/012004

Unnikrishnan R, Idury KS, Ismail TP, Bhadauria A, Shekhawat SK, Khatirkar RK, Sapate SG. Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments. Materials Characterization. 2014; 93:10-23. https://doi.org/10.1016/j.matchar.2014.03.013 DOI: https://doi.org/10.1016/j.matchar.2014.03.013

Kumar S, Shahi AS. Effect of heat input on the microstructure and mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints. Materials and Design. 2011; 32(6):3617-23. https://doi.org/10.1016/j.matdes.2011.02.017 DOI: https://doi.org/10.1016/j.matdes.2011.02.017

Bao LL, Wang Y, Han T. Microstructure and properties of lean duplex stainless steel UNS s32101 welded joint by hot wire tig welding. In Materials Science Forum. 2020; 993:466-73. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/MSF.993.466 DOI: https://doi.org/10.4028/www.scientific.net/MSF.993.466

Brytan Z, Niagaj J. Microstructural characterization of lean duplex stainless steel UNS S32101 welded joints using electron backscatter diffraction. Chiang Mai J Sci. 2013; 40(5):923-37.

Most read articles by the same author(s)