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1.  Introduction 
Medicinal plants play a pivotal role in the management 
and prevention of various infectious and non-infectious 
diseases. The medicinal plant performs a dynamic role in 
the development of new drugs. The threat of viral infection 
to human health has grown significantly. The emergence 
of new viruses with increasing virulence and the rapid 
spread of several known viruses are a great challenge 
facing the human population. Worldwide, viral infections 
are the main cause of morbidity and mortality. Apart 

from infections caused by the human immunodeficiency 
virus (HIV-1 and HIV-2), a new viral infection caused by 
SARS-CoV‐2 has emerged to challenge human survival. 
To cure these viral infections, a variety of medicinal plants 
and their extracts have been used traditionally and as a 
natural remedy since ancient times throughout the world1. 
Combinatorial chemistry and targeted drug design have 
been developed in the past century for the development 
of new drugs. However, medicinal plants provide a 
safe, non-toxic, and multitargeted approach to treating 
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The fruits of Momordica charantia (bitter gourd) have been well known for centuries as a natural remedy for the 
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and 27 compounds were detected in small and big bitter gourds, respectively. The molecules from M. charantia 
provide an antiviral response through the involvement of pathways like the Toll-like receptor pathway, the PI3/
AKT pathway, NF-kappa B signalling pathway, and cytokine-cytokine receptor interaction. Moreover, the core 
target genes, termed “Hub Genes” were also identified through Cyto-hubba. The main mechanisms of M. charantia 
were acquired by investigating the enrichment of each cluster through functional association clustering analysis. 
Our results exposed the mechanism of M. charantia against viral infection through multi-component, multi-target, 
and multi-pathway study combinations.
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various viral infections with broad-spectrum antiviral 
effects. Momordica charantia (Family Cucurbitaceae) is 
one such common consumable medicinal plant that has 
been preowned for centuries because of its numerous 
pharmacological and nutritional properties. The fruits of 
these plants are bitter, hence they are famously known as 
bitter gourds, bitter melons, or bitter squash. The plant 
contains a diverse range of phytochemicals, including 
steroids, triterpenes, saponins, alkaloids, and flavonoids. 
All these phytochemicals possess various therapeutic 
properties like bactericidal, anti-fungal, anti-viral, anti-
tumorous, anti-carcinogenic, anti-fertility, anti-parasitic, 
and hypoglycaemic properties2,3.

Currently, research on drug discovery is highlighted 
towards a systematic and multi-pharmacological 
approach as it promises a potential therapeutic solution to 
complex diseases and drug resistance issues. The approach 
to network pharmacology involves the identification of 
effective compounds from a medicinal plant4.

Network pharmacology is an important field, evolving 
as frontier research in the field of drug discovery and 
drug development with the integration of pharmacology 
and Bioinformatics. To discover a drug having high 
potency and fewer adverse effects, the concept of network 
pharmacology is constructed by targeting multiple nodes 
that are intertwined, which generates information more 
sharply than each node5. Network pharmacology plays a 
pivotal role in establishing a relationship between plant 
components and disease targets. With the development 
of plant metabolite databases such as PubChem, 
IMPPAT, etc., researchers can now build a relationship 
between disease targets and components to scientifically 
extract the existing scientific data. Through the network 
pharmacology approach, "compound proteins/gene-
disease" pathways can be established, which can help 
us to elucidate the complexity of the disease, drugs, and 
therapeutic targets from a systemic viewpoint. This 
concept offers a method for methodically revealing the 
correlation between multi-component targets and multi-
pathways. Network pharmacology not only explains the 
occurrence of diseases but also their development from 
the perspective of systems biology and biological network 
balance. Thus, with this new field, researchers were able 
to elucidate the interactions between several compounds 
and disease targets rather than the concept of "single 
disease, single target" for investigating the activities of 
M. charantia6-8.

M. charantia L. possesses various pharmacological 
benefits that include treatment of respiratory problems, 

diabetes, fever, HIV, AIDS, cancer, prevention, and 
treatment of many other viral infections9-11. Some of the 
experimental studies showed potential clinical activity 
and further studies need to be required to advocate its 
use. Many potent antiviral activities of M. charantia L. 
have been reported. Many studies reported on this plant 
showed that it strongly inhibits the growth of several 
viruses, including herpes simplex virus, hepatitis B virus 
and the human immunodeficiency virus. As far as we 
know, no comprehensive study has been conducted to 
scientifically describe the antiviral activity of M. charantia 
compounds, so our research focused on building a 
network that conveys the interactions between plant 
ingredients and viral protein targets in order to validate 
the antiviral activity of the active ingredients.

The main objective of this study is to explore the 
combinatorial approach of LC-HRMS and network 
pharmacology for the identification of compounds 
from small and big M. charantia and their associated 
pharmacological mechanisms related to viral infection. 
The primary chemical constituents of both varieties of 
M. charantia were investigated based on the network 
analysis approach. Phytochemicals of both varieties 
of M. charantia were done by LC-HRMS analysis. The 
network pharmacology approach is the best way to study 
the multicomponent synergistic mechanism. To explore 
the cellular mechanism involved behind the therapeutic 
effects of M. charantia in viral infection, the study of target 
compound-target-protein interaction, protein-protein 
interaction, and pathway analysis is very much important.

Figure 1.  �Workflow for Momordica charantia against 
viral infection.
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2.  Materials and Methods
Fresh Momordica charantia fruit samples were collected 
and washed properly. The fruits were then shade-dried 
and powdered. The powdered material was weighed, 
defatted with hexane, and finally extracted with methanol. 
The plant extract obtained after methanolic extraction 
was concentrated under a reduced vacuum by using 
a rotary evaporator at 40οC to obtain the methanolic 
extract. The extract was lyophilized for complete water 
removal and stored at 4οC. 10mg of methanolic extract 
was then weighed and dissolved in 1 ml LCMS grade 
methanol. The extract was then filtered through a 0.2-
μm PTFE membrane filter and was subjected to liquid 
chromatography-mass spectrometry screening for 
compound identification. The solvents used for extraction 
are laboratory grade while LCMS grade solvents are used 
to carry out LCMS analysis.

3.  Study Design
Chemical constituents of two varieties of M. charantia 
were recovered from public databases, namely, 
the IMPPAT database (Indian Medicinal Plants, 
Phytochemistry and Therapeutics), the Traditional 
Chinese Medicine System Pharmacology Database 
and Analysis Platform (TCMSP, http://sm.nwsuaf.
edu.cn/lsp/tcmsp.php) and reported literature. The 
phytochemicals were revealed through the application 
of four phases of pharmacokinetics parameters called 
Absorption, Distribution, Metabolism and Excretion 
(ADME) criteria. Genes related to antiviral infection were 
selected from human disease databases. Cytoscape 3.2.1 
software is a platform-independent open-source Java 
application for visualizing complex networks. It helps 
to build graphical displays, conduct analysis, and allow 
editing. The software uses bioinformatics to examine 
and analyze the association between phytochemicals and 
target proteins and the pathways involved. Moreover, 
there are several network analysis plug-ins are available 
that can help us to examine the correlation between 
multi-component and multiple targets, which in turn 
helps to identify the key nodes of the network. This could 
help us to identify the basic mechanism by which M. 
charantia demonstrated its antiviral effect and could be 
useful in the treatment of a variety of infectious diseases. 
In such networks, the nodes denote the compounds and 
the edges denote the interactions between the nodes. 

3.1  Chemical Databases
Various databases like IMPPAT (https://cb.imsc.res.
in/imppat/home), ChEMBL (https://www.ebi.ac.uk/
chembl/), PubChem (https://pubchem.ncbi.nlm.nih.
gov/) and ChemSpider (http://www.chemspider.com/) 
have been used to retrieve the molecular weight, molecular 
formula and 2D chemical structure of M. charantia. 
SMILES formats of the enlisted 2D chemical structures 
were generated using Chemdraw Professional 15.0.

3.2 � LC-HRMS Fingerprinting of Momordica 
charantia

The LCMS study was carried out on an ultra-high 
performance LC (UPLC), an Agilent 1290 Infinity II LC 
system that is coupled with Agilent. The UPLC system 
was assembled with a Diode Array Detector (DAD) 
and autosampler. The Chromatographic separation was 
achieved on an Agilent ZORBAX SB-C18 column (2.1 × 
100 mm, 1.8 µm) as the stationary phase and a suitable LC 
gradient program has been developed by using acetonitrile 
and water (0.1% formic acid) as a mobile phase. The 
mass spectrometry parameters like drying gas (N2) 
flow, drying gas temperature, capillary voltage, skimmer 
voltage, nozzle voltage, and fragment voltage have also 
been optimized. The data acquisition was accomplished 
using Agilent Mass Hunter Acquisition software (Agilent 
Technologies, Santa Clara, CA, USA).

3.3 � ADME Screening of Momordica 
charantia Ingredients

Most of the prominent active compounds fail to become 
drugs because of their poor kinetic characteristics (mainly 
oral bioavailability). Therefore, screening of ADME 
parameters plays a very crucial role in the drug discovery 
process (24-25). Drug Likeness (DL) is a qualitative 
concept that is utilized in the drug design process. It 
predicts the structural features and molecular properties 
of a lead molecule that will help us to optimize the 
pharmacokinetics and pharmaceutical features of those 
lead molecules to improve their solubility and chemical 
properties. 

The oral bioavailability of any drug mainly depends on 
its difference in metabolism in the liver, but the variability 
in its absorption and distribution is equally important too. 
Compounds with OB > 30% will be potentially recognized 
as active ingredients. The majority of the compounds 
have a high absorption potential. Caco-2 permeability is a 

http://sm.nwsuaf.edu.cn/lsp/tcmsp.php
http://sm.nwsuaf.edu.cn/lsp/tcmsp.php
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parameter that measures the permeability rate of any drug/
lead across polarized Caco-2 intestinal epithelial cells. This 
parameter will help us to predict the in vivo absorption 
of drugs in the intestine. Analysis of oral bioavailability 
limits F (20% and 30% bioavailability), Caco2 and Human 
Intestinal Absorption (HIA) indicators were performed 
for M. charantia fruit components by ADMETlab.

3.4  Network Pharmacology Analysis
To better exhibit the mechanism of action of two varieties 
of M. charantia in viral infection, we constructed four 
networks, namely, the drug compounds and compound 
target network, the drug compound-target-pathway 
network, the PPI network, and the hub gene analysis 
network.

3.5  Target Gene Prediction
The interaction between target proteins/genes with each 
active compound was obtained from the Swiss target 
prediction and binding database server. To obtain the 
interactivity between each active compound and its target 
genes in the Swiss target prediction server, first input the 
SMILES of query molecules in the Swiss target prediction 
server, then by choosing humans from the “organisms” 
parameter, and then press the search button to get the 
interacted target genes. While in the case of binding 
databases, the protein targets for identified M. charantia 
compounds of two varieties were predicted using “Find 
My Compound Targets”. After this, the target genes related 
to the viral infection obtained from the two databases for 
the two varieties of bitter gourd were selected for further 
analysis. Moreover, the antiviral targets associated with M. 
charantia were retrieved from Gene Cards (https://www.
genecards.com) and DisGeNET (https://www.disgenet.
org/). The “Homo sapiens” specific UniProt ID for the 
selected protein targets was obtained from the UniProt 
database, a freely accessible protein database (https://
www.uniprot.org), which provides information regarding 
protein sequence and their functional information12,13.

3.6 � Identification of Targets for Viral 
Infections

Gene Cards (https://www.genecards.com), DisGeNET 
(https://www.disgenet.org/), and Mala Cards (https://
www.malacards.org) databases were used for retrieving 

antiviral targets. Cytoscape software has been used to 
construct and visualize the network between the active 
compounds and their corresponding target genes. The 
software particularly visually integrates the network with 
expression profiles and links the network to databases of 
functional annotations14,15. To elucidate the mechanism of 
action of small bitter gourd and big bitter gourd, network 
visualizations of “compound target” and “compound-
target pathway network maps” were generated with the 
help of the visualization software, Cytoscape 3.2.116,17. 
Moreover, this software was used to create, edit, visualize 
and analyze the networks. In these networks, the nodes 
represent the compounds and the edges represent the 
interactions between the nodes.

3.7 � Protein-Protein Interaction (PPI) 
Network

A Protein-Protein Interaction (PPI) provides you with a 
statistical representation of the physical contacts between 
proteins in the cell. PPI networks are generally modelled 
via graphs in which the nodes correspond to proteins 
and the edges correspond to the interacting proteins. 
The PPI network was constructed by using an online free 
biological database known as STRING, which is known 
as Search Tool for the Retrieval of Interacting Genes/
Proteins) database (http://stringdb.org, version 11.0 with 
the organism set as “Homo sapiens”8. To construct the 
PPI network, the PPIs of the target genes were screened 
with confidence >0.40. The STRING database is usually 
used to search for interactions between known proteins 
and predicted proteins9,18 but the available information 
on protein-protein associations is incomplete and exhibits 
varying levels of annotation granularity and reliability. The 
STRING database aims to collect, score and integrate all 
publicly available sources of protein-protein interaction 
information, and to complement these with computational 
predictions. Its goal is to achieve a comprehensive and 
objective global network, including direct (physical. For 
the STRING analysis, the criteria included interaction 
sources from experiments, databases, co-expression, text 
mining, gene fusion, neighbourhood, and co-occurrence. 
A minimum interaction score of 0.70 or high-confidence 
interactions was considered. The top 10 genes showing 
the highest degree of confidence were sorted out and their 
protein network was built by using Cytoscape 3.2.1. 
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The PPI network systematically summarizes the 
interactions of M. charantia fruit targets correlated with 
viral infection treatment. The constructed PPI network 
showed that 36 viable protein target nodes were attached 
through 135 edges. The average node degree and local 
clustering coefficient were found to be 7.5 and 0.548, 
respectively. Interactions between proteins are indicated 
by a PPI enrichment p-value of less than 1.0 e−16. The 
target proteins are partially biologically connected as a 
group, which indicates the enrichment is significant. 

The novel Cytoscape plug-in Cytohubba was used 
to explore the important nodes in a biological network, 
which will rank the nodes in a network by their network 
features. The DEGREE algorithm was used to generate 
gene rankings, which were then chosen. The predicted 
top 10 contributing hub genes in small M. charantia that 
were considered crucial targets of M. charantia against 
viral infection are CASP3, CDk2, CXCL3, CCl3, IL1B, 
CASP, EGFR, CDK1, IL2, IL6. The top 10 genes predicted 
contributing hub genes in big M. charantia are IL1B, CCL3, 
CXCL8, EGFR, IL2, TNF, STAT3, CASP3, NOS2, and IL6.

3.8  DAVID Pathway Analysis
For pathway analysis, the identified targets corresponding 
to the individual compounds were subjected to pathway 
analysis using datasets for annotation. (DAVID) (https://
david.ncifcrf.govt), a free online bioinformatics resource19 
is a Visualization and Integrated Discovery tool. Through 
DAVID, one can identify the cellular components, 
biological processes, molecular functions, and biological 
pathways that are associated with the subjected genes.

3.9 � Gene Ontology (GO) and Pathway 
Enrichment Analysis

The targets in the network were imported into the 
Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) for elucidating the mechanism 
of action. The main aim of Gene Ontology (GO) is to 
perform enrichment analysis on gene sets and analyze 
the biological process. KEGG is a database collection 
that deals with drugs and chemical substances, diseases, 
genomes, and biological pathways. For two varieties of 

M. charantia, to study biological processes and signaling 
pathways, GO and KEGG pathway enrichment was 
performed.

3.10  Cluster Analysis
Cluster analysis or topological modules are the regions 
of densely connected molecular complexes that have 
the property of a pure network in large Protein-Protein 
Interaction (PPI) networks. Proteins that belong to the 
same cluster show their synergistic effect on disease 
progression. In the current study, functional annotation 
cluster analysis for the target proteins in complex 
bioinformatics networks has been formed.

4.  Results and Discussion
4.1  Analysis of Chemical Compounds
The LC-MS-based approach was employed to carry out 
the metabolite profiling of M. charantia. The Total Ion 
Chromatogram (TIC) obtained after LC-MS analysis of 
a methanolic extract of both big and small bitter gourds 
is illustrated in Figures 1 (a) and (b). We processed the 
chromatogram through MassHunter B.08 software and by 
comparing their molecular formulae and integrating with 
plant-specific customized libraries, we have identified 
22 and 27 compounds, respectively, in small and big M. 
charantia (shown in Tables 1 and 2). The retention time, 
experimental and calculated m/z score, error in parts per 
million (ppm), and a molecular formula of the identified 
compounds were expressed through mass spectroscopic 
data (Figure 2).

The error in the mass tolerance limit of 5 ppm has 
been set for compound identification. The chemical 
compounds of M. charantia are complex and mainly 
contain the following chemical constituents: charantin, 
cucurbitacin, diosgenin, elaeostearic acid, gentisic 
acid, goyaglycosides, goyasaponins, karounidiols, 
momorcharasides, momordenol, momordicillin, 
momordicinin, momordicoside, momordin and 
petroselinic acid. Potential target genes and associated 
compounds of M. charantia are expressed in Tables 1 
and 2.
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Table 1.  �Results of Liquid Chromatography Electrospray Ionisation Tandem Mass Spectrometry (LC-ESI-MS/MS) 
analysis of small Momordica charantia

Sl no Name of Compound Formula m/z Mass Rt Score PPM error 

1 Charantin C18 H30 O2 279.2310 278.2235 8.06 92.73 -1.87

2 Charantoside IV C29 H36 O15 683.2179 624.2046 2.66 64.96 -6.11

3 Diosgenin C29 H46 O2 485.3635 426.3495 16.96 98.93 -2.78

4 Elaeostearic acids C30 H46 O2 439.3568 438.3495 7.05 97.28 -2.11

5 Galacturonic acids C30 H46 O3 455.3509 454.3437 6.2 77.59 -3.4

6 Gentisic acid C30 H48 O2 485.3636 440.3654 16.96 99.13 1.76

7 Goyaglycoside E C30 H48 O3 457.3676 456.3602 7.2 97.79 1.07

8 Karavilagenin E C30 H48 O4 473.3606 472.3534 7.93 92.52 -0.37

9 Karaviloside III C36 H56 O7 601.4100 600.4023 5.62 88.14 -5.97

10 Karounidiols C36 H56 O7 601.4090 600.4016 4.36 97.63 0.03

11 Kuguacin C C36 H60 O10 653.4263 652.4183 5.44 90.82 -3.15

12 Kuguacin J C37 H60 O9 671.4130 648.4235 5.44 94.27 -4.36

13 Momordenol C37 H62 O8 679.4385 634.4404 15.23 77.02 -0.67

14 Momordicin C40 H56 O2 569.4375 568.4306 6.75 60.30 -5.87

15 Momordicinin C42 H68 O13 780.4668 780.4668 5.62 97.65 -0.64

16 Momordicoside Q C44 H68 O14 821.4636 820.458 4.44 73.72 -0.56

17 Myristic acid C6 H10 O7 217.0301 194.0428 3.05 50.17 -4.42

18 Pipecolic acid C10 H16 N4 O7 305.1064 304.1009 2.43 62.4 -8.22

19 Taiwacin A C6 H11 N O2 130.0863 129.0791 1.02 87.04 -6.56

20 Verbascoside C35 H60 O6 611.4089 576.4393 27.1 81.78 -1.32

21 Vicine C7 H6 O4 153.0187 154.0259 4.85 97.13 -2.06

22 Zeaxanthin C27 H42 O3 459.3043 414.3069 18.65 10.95 -4.6

Table 2.  �Results of Liquid Chromatography Electrospray Ionisation Tandem Mass Spectrometry (LC-ESI -MS/MS) 
analysis of big Momordica charantia

Sl no Name of Compound Formula m/z Mass Rt Score PPM error 

1 Charantin C18 H30 O2 279.2310 278.2235 8.06 92.73 -1.87

2 Charantagenin D C37H60 O9 671. 4146 648.4261 7.87 64.38 -2.12

3 Charantoside IV C29 H36 O15 683.2179 624.2046 2.66 64.96 -6.11

4 Diosgenin C29 H46 O2 485.3635 426.3495 16.96 98.93 -2.78

5 Elaeostearic acids C30 H46 O2 439.3568 438.3495 7.05 97.28 -2.11

6 Galacturonic acids C30 H46 O3 455.3509 454.3437 6.2 77.59 -3.4

7 Gentisic acid C30 H48 O2 485.3636 440.3654 16.96 99.13 1.76

8 Goyaglycoside E C30 H48 O3 457.3676 456.3602 7.2 97.79 1.07

19 Lycopene C40H56 571.41 536.4352 8.9 40.29 1.98

10 Karavilagenin E C30 H48 O4 473.3606 472.3534 7.93 92.52 -0.37

11 Karaviloside III C36 H56 O7 601.4100 600.4023 5.62 88.14 -5.97

(Continued )
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Sl no Name of Compound Formula m/z Mass Rt Score PPM error 

12 Karounidiols C36 H56 O7 601.4090 600.4016 4.36 97.63 0.03

13 Kuguacin C C36 H60 O10 653.4263 652.4183 5.44 90.82 -3.15

14 Karavilagenin E C30H48O3 457.3676 456.3602 7.2 97.79 -2.10

15 Kuguacin J C37 H60 O9 671.4130 648.4235 7.33 94.27 -4.36

16 Momordenol C37 H62 O8 679.4385 634.4404 15.23 77.02 -0.67

17 Momordicin C40 H56 O2 569.4375 568.4306 6.75 60.30 -5.87

18 Momordicinin C42 H68 O13 780.4668 780.4668 5.62 97.65 -0.64

19 Moimordin C41H64O13 809.428 764.4313 11.51 56.24 -1.56

20 Momordicoside Q C44 H68 O14 821.4636 820.458 4.44 73.72 -0.56

21 Myristic acid C6 H10 O7 217.0301 194.0428 3.05 50.17 -4.42

22 Momordicosides C47H80O19 974.5278 948.5270 2.08 63.47 -6.54

23 Pipecolic acid C10 H16 N4 O7 305.1064 304.1009 2.43 62.4 -8.22

24 Petroselinic Acid C18H34O2 281.2481 282.2554 8.6 83.12 -2.20

25 Taiwacin A C6 H11 N O2 130.0863 129.0791 1.02 87.04 -6.56

26 Verbascoside C35 H60 O6 611.4089 576.4393 27.1 81.78 -1.32

27 Vicine C7 H6 O4 153.0187 154.0259 4.85 97.13 -2.06

Table 2.  �(Continued)

Figure 2.  �LCMS analysis of (a) Big Bitter Gourd, (b) Small Bitter Gourd.
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4.2 � ADME Screening of Momordica 
charantia Ingredients

The ADME properties of the metabolites of M. charantia 
are being analyzed. The specific information on each of the 
identified components is represented in Table 3. The present 
study was undertaken to screen the components along with 
their pharmacokinetic properties like Drug Likeness (DL), 
F (20% bioavailability), F (30% bioavailability), Caco2, 
and Human Intestinal Absorption (HIA) indicators. The 
compounds show a high probability of absorption. 

Table 3.  �ADME Profile of  Momordica charantia 
compounds

Compound DL CACO2 HIA F20 F30
Pipecolic acid 0.55 -4.836 0.719 0.7 0.545
Gentisic acid 0.56 -5.099 0.466 0.716 0.542
Cucurbitacins -5.172 0.63 0.26 0.296
Diosgenin 0.55 -4..843 0.782 0.522 0.366
Vicine 0.17 -6.328 0.242 0.289 0.303
Momordin 0.11 -5.944 0.433 0.279 0.307
Momordicin 0.55 -5.01 0.781 0.495 0.285
Momordenol 0.55 -4.735 0.927 0.541 0.461
karounidiols 0.55 -5.109 0.874 0.538 0.406
Zeaxanthin 0.17 -5.149 0.77 0.614 0.532
Gypsogenin, 0.85 -5.397 0.701 0.327 0.344
Elaeostearic acids 0.85 -4.730 0.78 0.491 0.259
Verbascoside 0.17 -6.809 0.18 0.396 0.199
Goyasaponins 0.11 -4.698 0.271 0.201 0.241
Petroselinic acid 0.85 -5.151 0.794 0.453 0.266
Momordicinin 0.55 -4.696 0.840 0.597 0.429
Charantin 0.17 -5.777 0.293 0.253 0.340
Lycopene 0.17 -4.851 0.750 0.721 0.478
Momordicosides 0.17 -6.327 0.271 0.272 0.31
Kuguacin J 0.55 -5.15 0.857 0.245 0.31
Kuguacin C 0.55 -5.38 0.772 0.482 0.320
Karavilagenin E 0.55 -5.128 0.771 0.478 0.325
Goyaglycoside E 0.17 -5.796 0.193 0.275 0.320
Charantoside IV 0.55 -5.232 .209 0.299 0.305
Taiwacin A 0.55 -5.802 0.276 0.226 0.219
Momordicoside Q 0.17 -5.83 0.262 0.243 0.316
Karaviloside III 0.55 -5.789 0.253 0.257 0.345
Charantagenin D 0.55 -5.791 0.259 0.255 0.351
Karounidiols 0.55 -5.109 0.874 0.538 0.406
Myristic acid 0.85 -4.636 0.8 0.453 0.291

4.3 � Compound-Target-Pathway-Network 
Analysis of M. charantia

Network pharmacology is considered a powerful tool for 
the exploration of drug targets. The identified compounds 
from M. charantia can act on one or more targets in 
the current study, and most targets have a synergistic 
therapeutic effect. A compound-target-pathway 
combination network was constructed to establish this 
potential synergistic relationship, as shown in Figures 
3 and 4 which represent the Venn diagram where 21 
overlapping compounds are present in M. charantia.

Blue : Compounds
Green : Targets
Red : Disease Pathways 

Figure 3.  �Compound-Target-Pathway analysis of M. 
charantia.

Figure 4.  �Venn Diagram for small and big bitter gourd 
compounds: 21 Overlapping compounds 
present both varieties of Bitter Gourd.
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Through this network analysis, we could easily 
identify the multiple targets and multiple pathways 
that are associated with the M. charantia compounds, 
which will help us to justify the mechanism associated 
with the antiviral effect. For example, charantoside IV 
acted on 7 targets (such as STAT3, CTSD, CTSL, CASP7, 
CASP3.IL-2, CDK2), charantagenin D acted on 4 targets 
(IL-2, CTSL, EGFR, CDk2), while both charantoside 
IV and charantagenin D commonly acted on CDK2. 
Based on the network topological analysis, we have 
listed the top 9 phytoconstituents in descending order 
according to their major contributions to treating viral 
infection: gentisic acid, diosgenin, goya glycoside E, 
mormordicin, karoundiols, vicine,  kuguain J, charantin, 
karavilagenin E.

The UniProt IDs of the targets were put into STRING 
(http://string-db.org/, version10.5). The “functional 
association” is the basic interaction unit in STRING, 
which provides a common tool for predicting protein-
protein interaction. The STRING analysis summarized 
the interactions of M. charantia targets associated with 
viral infection treatment. The PPI network exhibits 
24 viable protein target nodes in small M. charantia 
connected by 103 edges. The average node degree is 8.58 
and the average local clustering coefficient is found to be 
0.738, while in the case of big M. charantia, the network 
exhibits 26 viable protein target nodes that are attached 
by 109 edges. The average node degree and average local 
clustering coefficient were found to be 8.38 and 0.723, 
respectively. The PPI enrichment p-value is found to be 
less than <1.0 e−16 which suggests that the proteins have 
more interactions among themselves (Figures 4a and 
4b). The target proteins are at least partially biologically 
connected as a group, as indicated by this significant 
enrichment.

Nodes that have important biological functions 
generally have a high connectivity degree (≥5) and 
are labelled as hub genes. The protein targets were 
ranked depending on their degree values and a network 
relationship among these top 10 targets by cytoHubba 
as shown in Figures 5a and 5b. CASP3, EGFR, IL6, IL2, 
CDK1, CDK2, CXCL8, CCL3, IL8, and CASP7 were 
the top 10 hub genes in the case of small M. charantia. 
In the case of big M. charantia, the top 10 hub genes 
were CXCL8, STAT3, TNF, CXCL8, CCL3, CASP3, IL6, 
NOS2, IL2, and IL1B. Thus, the mentioned proteins are 
generally considered the core targets in the Protein-
Protein Interaction network and are closely linked with 

the components of M. charantia in the treatment of viral 
infection. The target proteins identified are also involved 
in the inflammatory response, Influenza A, Hepatitis C, 
Hepatitis A, Viral carcinogenesis, Apoptosis, Pathways 
of cancer, and Herpes simplex virus infection. The node’s 
color was displayed in descending order of degree value, 
in a gradient from red to yellow. The ranking of PPI core 
targets of big and small Momordica charantia by degree 
method is represented in Table 4 (Figure 6).

Figure 5.  �(a) Hub genes for Big bitter gourd, (b) Hub 
genes for Small bitter gourd.

Table 4.  �Ranking of PPI Core Targets of Big and Small 
Momordica charantia by Degree Method 

Sl No Targets of
BMC

Degree Targets of SMC Degree

1 STAT3 36 CASP3 34

2 EGFR 36 EGFR 24

3 CASP3 32 CXCL8 18

4 TNF 30 IL6 14

5 IL6 26 IL2 14

6 IL2 25 CDK2 13

7 CXCL8 23 IL1B 12

8 IL1B 18 CDK1 12

9 CCL3 16 CCL3 12

10 NOS2 16 CASP3 11

BMC: Big M. charantia; SMC: Small M. charantia.

http://string-db.org/
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Most of the compounds, such as elaeostearic acid, 
kuguacin C, momordicin, and kuguaicin J interact 
with the Tumour Necrosis Factor (TNF), which is a 
cytokine - a small protein used by the immune system 
for cell signalling that activates the cytokine-cytokine 
receptor interaction, T cell receptor signalling pathway, 
and TNF signalling pathway. Moreover targets such as 
cathepsin L, cathepsin D, interleukin-2, interleukin-6, 
interleukin-8, epidermal growth factor, and vitamin 
D receptor interact with most compounds and give 
protection against viral infection.

Figure 6.  �The Protein-Protein Interaction (PPI) network 
and significant module constructed by the 
STRING database and Cytoscape 3.7.2. Node, 
target proteins; lines, interactions between 
proteins. PPI of the common targets of (a) Big 
Bitter Gourd and (b) Small Bitter Gourd related 
to antiviral infection.

4.3.1 � Gene Ontology (GO) and Enrichment 
Analysis

Gene ontology analysis has been commonly used for the 
functional analysis of genes. It mainly describes the role of 
gene products in the biological functions of cell function 

and molecular function. The top scores represent the 
most highly valued genes in the list of genes (as shown 
in Tables 5 and 6). The apex 10 terms involved in the 
three categories of gene ontology process designated as 
molecular function, cellular component and biological 
process, which are represented by Figures 7(a), 7(b) and 
7(c), respectively.

GO enrichment analysis showed that the biological 
process was enriched with the response to an organic 
substance, positive regulation of molecular function, 
response to an organic substance, cellular response 
to oxygen-containing compounds, regulation of cell 
proliferation, etc.

The target genes responsible for protein kinase C 
activity, signalling receptor binding, calcium-independent 
protein kinase C activity, cytokine activity, calcium-
dependent protein kinase C activity, and protein binding 
and receptor regulator activity were expressed at the 
molecular level. At the cellular level, they were related to 
the extracellular space, cyclin-dependent protein kinases, 
and the immunological synapse.

Figure 7.  �Go analysis for Big Bitter and Small Bitter 
Gourd was done under the categories of (a) 
Molecular function, (b) Biological process, (c) 
Cellular Function.
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(Continued )

Table 5.  The Top 10 most significant terms in GO enrichment analysis in Small Momordica charantia

ID Description P-adjust Count
Biological Process

GO:0035556 Intracellular signal transduction 8.17E-11 17
GO:0010033 Response to organic substance 1.12E-10 20
GO:0042493 Response to drug 1.76E-10 14
GO:0044093 Positive regulation of molecular function 1.76E-10 17
GO:1901700 Response to oxygen-containing compound 1.76E-10 16
GO:1901701 Cellular response to oxygen-containing compound 1.76E-10 14
GO:0070887 Cellular response to chemical stimulus 2.96E-10 19
GO:0042127 Regulation of cell population proliferation 4.87E-10 16
GO:0043066 Negative regulation of the apoptotic process 1.08E-09 13
GO:0002684 Positive regulation of the immune system process 1.22E-09 13

Molecular Function
GO:0004697 Protein kinase C activity 3.00E-11 6
GO:0005102 Signalling receptor binding 3.18E-08 14
GO:0005126 Cytokine receptor binding 7.51E-08 8
GO:0004672 Protein kinase activity 9.95E-08 10
GO:0004674 Protein serine/threonine kinase activity 9.95E-08 9
GO:0004699 Calcium-independent protein kinase C activity 8.94E-07 3
GO:0140096 Catalytic activity, acting on a protein 8.94E-07 14
GO:0005515 Calcium-dependent protein kinase C activity 1.34E-06 3
GO:0097367 Protein binding 1.64E-06 21
GO:0030545 Receptor regulator activity 1.64E-06 8

Cellular Component
GO:0005615 Extracellular space 7.54E-05 10
GO:0005576 Extracellular region 0.00015 13
GO:0031982 Vesicle 0.0136 10
GO:0000307 Cyclin-dependent protein kinase holoenzyme complex 0.0217 2
GO:0001772 Immunological synapse 0.0217 2
GO:0005737 Cytoplasm 0.0217 21
GO:0005775 Vacuolar lumen 0.0217 3
GO:0031410 Cytoplasmic vesicle 0.0217 9
GO:0045121 Membrane raft 0.0217 4
GO:0048471 Perinuclear region of cytoplasm 0.0217 5

Table 6.  The Top 10 most significant terms in GO enrichment analysis in Big Momordica charantia

ID Description P-adjust Count
Biological Process

GO:0010033 Response to organic substance 6.75E-12 22
GO:0035556 Intracellular Transduction Signal 1.38E-11 18
GO:0070887 Cellular response to chemical stimulus 2.07E-11 21
GO:0006468 Protein phosphorylation 4.27E-11 15
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ID Description P-adjust Count
GO:0044093 Positive regulation of molecular function 4.27E-11 18
GO:0016310 Phosphorylation 8.62E-11 16
GO:0042127 Regulation of cell population proliferation 1.59E-10 17
GO:0042221 Response to chemical 1.59E-10 23
GO:0045937 Positive regulation of the phosphate metabolic process 1.59E-10 15
GO:0042493 Response to drug 2.61E-10 14

Molecular Function
GO:0004697 protein kinase C activity 5.18E-11 6
GO:0004672 protein kinase activity 1.15E-09 12

GO:0004674 protein serine/threonine kinase activity 9.25E-09 10
GO:0005102 signalling receptor binding 4.05E-08 14
GO:0140096 catalytic activity, acting on a protein 4.05E-08 16
GO:0005126 Cytokine receptor binding 5.25E-08 8
GO:0004699 Calcium-independent protein kinase C activity 9.93E-07 3
GO:0008144 Drug binding 1.37E-06 13

GO:0004698 Calcium-dependent protein kinase C activity 1.45E-06 3
GO:0097367 Carbohydrate derivative binding 2.02E-06 14

Cellular Component
GO:0005576 extracellular region 0.00013 14
GO:0005615 extracellular space 0.00013 10
GO:0031982 Vesicle 0.0057 11
GO:0048471 Perinuclear region of cytoplasm 0.0098 6
GO:0071944 Cell periphery 0.0098 16
GO:0012505 Endomembrane system 0.0108 14
GO:0031410 Cytoplasmic vesicle 0.0108 10
GO:0000307 Cyclin-dependent protein kinase holoenzyme complex 0.0135 2
GO:0001772 Immunological synapse 0.0135 2
GO:0005737 Cytoplasm 0.0135 23

Table 6.  �(Continued)

4.3.2  KEGG Pathway Annotation
KEGG pathway annotation showed that in both small and 
big M. charantia, the enriched target genes were 27 and 
involved in 131 pathways associated with the immune 
system, cytokine-cytokine receptor interaction, influenza 
A, hepatitis B, TNF signalling pathway, MAPK signalling 
pathway and PI3K-AKT signalling pathway.

Since the potential targets for the viral infection disease 
were identified, the pathways associated with influenza A 
and the immune system were chosen. For instance, the 
B-cell receptor, the Fc epsilon RI, the Toll-like receptor and 
the T-cell receptor signalling pathways are engaged in the 

regulation of the immune system and signalling pathways 
like NF-κ Band TNF are involved in inflammation. 
Moreover, the MAPK, PI3K/AKT, and NF-kappa B 
signalling pathways are also identified in this analysis. The 
PI3K/AKT signalling pathway is important for cell survival, 
cell growth, metabolism, differentiation, and apoptosis17,18. 
KEGG  (Kyoto Encyclopedia of Genes and Genomes) 
pathway analysis revealed that the active phytoconstituents 
of M. charantia act on the gene nodes within the cAMP and 
PI3K/AKT signalling pathways (Figures 8(a) and 8(b)). 
These data follow the multiple effects that M. charantia has 
on different signalling and cellular pathways.
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Figure 8.  �KEGG Pathway analysis of (a) Big Bitter Gourd, (b) Small 
Bitter Gourd.

4.4  DAVID Pathway Analysis
To investigate the mechanisms of M. charantia, the 
UniProt IDs list of 27 common genes was uploaded into 

the DAVID 6.8 bioinformatics resource. The pathways 
that are associated with the viral infection like cytokine-
cytokine receptor interaction and Influenza A pathway 
were being selected in Figures 9(a) and 9(b).

Figure 9.  �DAVID pathway analysis: (a) cytokine-cytokine receptor 
interaction, (b) Influenza A pathway; the stars indicate the 
targets where the molecules interact.



182 Multi-Targeted Prediction of the Antiviral Effect of Momordica charantia...

Journal of Natural Remedies | ISSN: 2320-3358� http://www.informaticsjournals.com/index.php/jnr | Vol 23 (1) | January 2023

4.5  Cluster Analysis
In large PPI networks, clusters or topological modules 
are the regions where molecular complexes are connected 
densely. Functional association clustering analysis found 
18 clusters for big M. charantia with the highest cluster 
score of 3.84 and 17 clusters for small M. charantia 
with the highest cluster scoring value of 5.75. The main 
mechanisms of M. charantia are acquired by investigating 
the enrichment of each cluster. The cluster analysis 
is represented in Figures 9 and 10. It was observed 
that through the network enrichment analysis, some 
important activities responsible for the antiviral effect 
include pathways like Protein Kinase C activity, Jak-
STAT signalling pathway, P13K-AKT signalling pathway, 
Toll-Like Receptor Signalling Pathway, and Signal 
Transduction. Some important clusters of Small Bitter 
Gourds and Big Bitter Gourds were represented in Figures 
10 and 11.

Figure 10.  Cluster analysis of Small Bitter Gourd.

Figure 11.  Cluster analysis of Big Bitter Gourd.

5.  Conclusion
M. charantia has been described as a versatile plant and it 
has been studied extensively for its medicinal properties 
to treat a variety of diseases. Identification of compounds 
by LC-HRMS analysis followed by a new discipline called 
network pharmacology to understand drug actions 
and interactions with multiple targets provided a new 
perception of the mechanism of M. charantia in the 
treatment of viral infection. A total of 29 active compounds 
in both varieties of M. charantia were screened and hit by 
active 30 potential targets related to viral infection. Our 
results exposed the mechanism of M. charantia against 
viral infection through multi-component, multi-target, 
and multi-pathway studies.

Moreover, the results indicated that M. charantia was 
found to be powerful in the treatment of viral infection 
by regulating key pathways, including the Toll-like 
receptor, P13K-AKT signalling pathway, influenza, viral 
carcinogenesis, the Jak-Stat signalling pathway and the 
NF-kappa B signalling pathway.

These results provide significant information for 
further pharmacological investigations of M. charantia. 
The method of network pharmacology analysis helps to 
understand the mechanisms of M. charantia to combat 
viral infections and promote further drug research and 
development.

Moreover, the study provides a good foundation for 
carrying out further studies on specific pathways and 
provides evidence to support the safe and effective clinical 
use of M. charantia.
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