The Effects of Nb and Mo Addition on Microstructure and Mechanical Behaviour of Ti-6Al-4V Alloy

Jump To References Section

Authors

  • Laboratoire de Génie des Procèdes, Université Amar Telidji – Laghouat, B.P. 37G Laghouat 03000 ,DZ
  • Laboratoire de Sciences Fondamentales, Université Amar Telidji – Laghouat, B.P.37G Laghouat 03000 ,DZ
  • Laboratoire de Génie des Procèdes, Université Amar Telidji – Laghouat, B.P. 37G Laghouat 03000 ,DZ
  • Departamento de Ciencia e Ingenierí­a de Materiales, Carlos III Universidad, 30, 28911 Leganés, Madrid ,ES

DOI:

https://doi.org/10.18311/jsst/2017/11026

Keywords:

Molybdenum, Microstructure, Microhardness, Niobium, Ti-6Al-4V Alloy, Young's Modulus

Abstract

The effects of Nb and Mo addition, with different contents, on the microstructure and some mechanical properties of Ti-6Al-4V alloy were investigated. Treatments were performed at various high temperatures about 1200 and 1300 °C for 3h using vacuum furnace as first treatment and using an argon atmosphere as second treatment. The samples were characterized by X-ray diffraction and the influence of processing temperature on microstructure was studied, the microstructural evolution was evaluated by optical microscopy and SEM. The results revealed that the Nb and Mo elements added to the titanium alloy stabilized the β phase and changed the lattice parameters of α phase. Microstructural observations, phase analysis shown that Ti-6Al-4V alloy contain single phase and increasing Nb and Mo contents the equiaxed grain is refined, and reduction in the prior β grain size. Moreover, Nb/Mo addition up to 10 wt.% increases the volume fraction of β phase in the microstructure. Some mechanical properties such as hardness, Young's modulus and fracture toughness were achieved and tensile test was performed at room temperature. Experimental results revealed good mechanical properties including a low Young's modulus and high deformability, the hardness values of the alloy is about 350-570 HV and the fracture toughness values KIC are ranging from 16.8 MPa m1/2 to 28.5 MPa m1/2 depending on Nb/Mo contents.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2017-07-24

How to Cite

Kaouka, A., Benarous, K., Daas, A., & Tsipas, S. A. (2017). The Effects of Nb and Mo Addition on Microstructure and Mechanical Behaviour of Ti-6Al-4V Alloy. Journal of Surface Science and Technology, 33(1-2), 53–62. https://doi.org/10.18311/jsst/2017/11026

Issue

Section

Articles
Received 2017-01-02
Accepted 2017-05-19
Published 2017-07-24

 

References

M. J. Donachie, Titanium, Technical Guide. 2nd ed. Ohio, USA: ASM International; 2000.

C. Leyens C and M. Peters, Titanium and Titanium Alloys. Fundamentals and Applications. Köln, Germany: Wiley-VCH; 2003.

A. Bose and W. B. Eisen, Hot consolidation of powders and particulates, Metal Powder Industries Federation, USA: Princeton; 2003.

S. A. Tsipas, E. Gordo, A. Jiménez-Morales, Corrosion Sci., 88, 263 (2014).

L. Bolzoni, E. M. Ruiz-Navas and E. Gordo, Mater. Des., 60, 226 (2014).

A. D. Romig and M. J. DeHaemer, ASM Handbook, vol. 7: Powder metal technologies and applications. Ohio, USA: ASM, International; 1998.

L. Bolzoni, E.M. Ruiz-Navas, E. Neubauer and E. Gordo, Mater. Chem. Phys., 131, 672 (2012).

S. B. Gabriel, J. Dille, C.A. Nunes and G. A. Soares, Mater. Res., 13, 1 (2010).

D. M. Gordin, T. Gloriant, G. Nemtoi, R. Chelariu, N. Aelenei and A. Guillou, Mater. Lett., 59, 2959 (2005).

N. Oliveira, G. Aleixo, R. Caram and A. C. Guastaldi, Mater. Sci. Eng., 452-453, 727 (2005).

F. Binguo, W. Hongwei, Z. Chunming and W. Zunjie, Mater. Des., 66, 267 (2015).

W. J. Zhang, X. Y. Song, S. X. Hui, W. J. Ye and Y. L. Wang, Mater. Sci. Eng., 595, 159 (2014).

L. B. Zhang, K. Z. Wang, L. J. Xu, S. Xiao, Y. Ccen, Transactions of Nonferrous Metals Society of China, 25, 2214 (2015).

M. T. Mohammed, Z. A. Khan and M. Geetha, J. Transactions of Nonferrous Metals Society of China, 25, 759 (2015).

C. A. Zhao, X. N. Zhang and P. Cao, J. Alloy. Comp., 509, 8235 (2011).

S. B. Gabriel, J .V. Panino, I. D. Santos, L. S. Araujo, P. R. Mei, L. H. de Almeida and C. A. Nunes, J. Alloy. Comp., 536, 208 (2011).

A. Kaouka, O. Allaoui and M. Keddam, Matériaux and Techniques, 101, 705 (2013).

Shima Ehtemam-Haghighi, L. C, Yujing, Guanghui and Z. Lai-Chang, Mater. Sci. Eng. C., 60, 503 (2016). PMid:26706557.

S. B. Gabriel, J. Dille, M. C. Rezende, P. Mei, L. H. de Almeida nd R. Baldan, C. Mater. Res., 18, 8 (2015).

D. C. Ghosh and L. Biswas, J. of Molecular Sciences, 3, 87 (2002).

Y. Mantani and M. Tajima, Mater. Sci. Eng., 438-440, 315 (2006).

C. Y. Cui and D. H. Ping, J. Alloys and Compounds, 471, 248 (2009).

P. J. Bania, D. Eylon, R. Boyer and D. Koss (Eds), Beta Titanium Alloy in the 1990's, Warrendale, PA, TMS, (1993).

L. Bolzoni, E. M. Ruiz-Navas and E. Gordo, Mater. Chem. Phys., 137, 608 (2012).

Y. Zhu, X. Wang, L. Wang, Y. Fu, J. Qin, W. Lu and D. Zhang, Mater. Sci. Eng. C., 32, 126 (2012).

G. H. Liu, X. Z. Li and Z.Yuan, D. Trans. Nonferrous Met. Soc. China, 24, 4044 (2014).

J. L. Fan, X. Z. Li, Y. Q. Su, J. J.Guo and H. Z. Fu, J. Alloys Compounds, 506, 593 (2010).

J. Beddoes, W. R. Chen and L. Zhao, J. Material Science, 37, 621 (2002).

K. Okazaki and H. Conrad, Tranactions of JIM, 14, 364 (1973).

L. J. Xu, Y. Y. Chen, Z. G. Liu and F. T. Kong, J. of Alloys and Compounds, 453, 320 (2008).