Physical Investigations on (MoO3)x-(WO3)1-x Composite Thin Films

Jump To References Section

Authors

  • Department of Applied Sciences and Humanities, Sasi Institute of Technology and Engineering, Tadepalligudem – 534 101, West Godavari Dt, Andhra Pradesh ,IN
  • Department of Sciences and Humanities, Chalapathy Institute of Technology, A R Nagar, Mothadaka, Guntur – 522016, Andhra Pradesh ,IN

DOI:

https://doi.org/10.18311/jsst/2019/18461

Keywords:

Composite Thin Films, Characterization, Flash Evaporation, Photochromism
thin films

Abstract

Thin films of (MoO3)x-(WO3)1-x (x = 0.4, 0.6, 0.8) were deposited on glass and silicon (100) substrates by flash evaporation technique. The purpose of the flash evaporation is to prevent the decomposition of composite into individual species during thin film deposition. The films were deposited at the oxygen partial pressures of 2x10-5, 2x10-4 mbar and substrate temperatures of 150 0C, 350 0C. The deposited films were characterized for their structure by Graging Incidence X-ray Diffraction (GIXRD), microstructure by Field Emission Scanning Electron Microscopy (FESEM), optical property by UVVis spectra. The X-ray diffraction reveals that the (MoO3)x-(WO3)1-x composite thin film crystallizes in orthorhombic and monoclinic phases. At lower oxygen partial pressures of 2x10-5 mbar and lower substrate temperatures of 150 0C the film crystallizes in orthorhombic and tetragonal phases. Whereas at higher substrate temperatures of 350 0C both orthorhombic and monoclinic mixed phases are present. The optical transmittance spectra of the films were recorded in the wavelength range 300-1100 nm. The optical energy gap of the films is 3.05 eV and increases to 3.21 eV with increase in MoO3 concentration. The width of localized states is 0.47 eV and decreasing with increasing MoO3 concentration. The oxide materials in thin film form exhibit the change in the transmittance when exposed to electro magnetic waves (EM) of visible region. In this respect the estimation of color centre concentration will give the information regarding the response of the films to change their transmittance when exposed to EM waves in the visible region. The colourcenter concentration of the films (for x = 0.4) deposited at 150 0C and irradiation time of 120 minutes, is 3.02 x 1017/cm3 and reaches to maximum value of 4.94 x 1017/cm3, (for x = 0.8) when deposited at 350 0C and irradiated for 150 minutes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2019-06-25

How to Cite

Srinivasarao, K., & Prameela, C. (2019). Physical Investigations on (MoO<sub>3</sub>)<sub>x</sub>-(WO<sub>3</sub>)<sub>1-x</sub> Composite Thin Films. Journal of Surface Science and Technology, 35(1-2), 26–35. https://doi.org/10.18311/jsst/2019/18461

Issue

Section

Articles
Received 2017-12-12
Accepted 2018-09-26
Published 2019-06-25

 

References

S. Morandi, G. Ghiotti, A. Chiorino and E. Comini, Thin Solid Films, 490, 74 (2005). https://doi.org/10.1016/j.tsf.2005.04.020 DOI: https://doi.org/10.1016/j.tsf.2005.04.020

R. Godbole, A. Vedpathak, V. Godbole and S. Bhagwat, Mater. Res. Express., 4, 076401 (2017). https://doi.org/10.1088/2053-1591/aa72a8 DOI: https://doi.org/10.1088/2053-1591/aa72a8

Lee K, de Lannoy CF, Liguori S, Wilcox J, Langmuir, 33, 9521 (2017). https://doi.org/10.1021/acs.langmuir.6b04149 DOI: https://doi.org/10.1021/acs.langmuir.6b04149

C. C. Mardare and A. W. Hassel, ACS Comb. Sci., 16, 631 (2014). https://doi.org/10.1021/co5000536 PMid:25330357 DOI: https://doi.org/10.1021/co5000536

E. H. Poniatowski, M. Jouanne, J. F. Morhange, C. Julien, R. Diamant, M. F. Guasti, G. A. Fuentes and J. C. Alonso, Appl. Surf. Sci., 127-129, 674(1998). https://doi.org/10.1016/ S0169-4332(97)00724-1 DOI: https://doi.org/10.1016/S0169-4332(97)00724-1

H. Miyazaki, M. Inada, H. Suzuki and T. Ota, J. Ceramic Soc. Japan, 121, 106 (2013). https://doi.org/10.2109/ jcersj2.121.106 DOI: https://doi.org/10.2109/jcersj2.121.106

K. Gesheva, A. Szekeres and T. Ivanova, Sol. Energ. Mater. Sol. Cell., 76, 563 (2003). https://doi.org/10.1016/S09270248(02)00267-2 DOI: https://doi.org/10.1016/S0927-0248(02)00267-2

K. S. Rao, K. V. Madhuri, S. Uthanna, O. M. Hussain and C. Julien, Mater. Sci. Eng. B., 100, 79 (2003). https://doi.org/10.1016/S0921-5107(03)00078-3 DOI: https://doi.org/10.1016/S0921-5107(03)00078-3

J. N. Yao, B. H. Loo, K. Hashimoto and A. Fujishima, Phys. Chem. Phys., 95, 554 (1991). DOI: https://doi.org/10.1002/bbpc.19910950502

M. A. Ashrafi, M. Ranjbar, H. Kalhori and H. Salamati, Thin Solid Films, 621, 220 (2017). https://doi.org/10.1016/j.tsf.2016.11.041 DOI: https://doi.org/10.1016/j.tsf.2016.11.041

H. Miyazaki, T. Matswra and T. Ota, RSC Adv., 7, 2388 (2017) DOI: https://doi.org/10.1039/C6RA25892A

K. Galatsis, Y. X. Li, W. Wlodarski, K. K. Zadeh, Sensors and Actuators B., 77, 478 (2001). DOI: https://doi.org/10.1016/S0925-4005(01)00738-9

A. Bouzidi, N. Benramdane, H. T. Derraz, C. Mathieu, B. Khelifa and R. Desfeux, Mater. Sci. Eng. B., 97, 5 (2003). https://doi.org/10.1016/S0921-5107(02)00385-9 DOI: https://doi.org/10.1016/S0921-5107(02)00385-9

H. M. F. Ahmed and N. S. Begum, Bull. Mater. Sci., 36, 45 (2013). https://doi.org/10.1007/s12034-013-0422-y

F. Hamelmann, K. Gesheva, T. Ivanova, A. Szekeres, M. Abrashev and U. Heinzmann, Journal of Optoelectronics and Advanced Materials, 7, 393 (2005).

H. M. F. Ahmed and N. S. Begum, Bull. Mater. Sci., 36, 45 (2013) https://doi.org/10.1007/s12034-013-0422-y DOI: https://doi.org/10.1007/s12034-013-0422-y

A. A. Akl, S. A. Aly and M. A. Kaid, Res. Rev. J. Mater. Sci. (2016). DOI: 10.4172/2321-6212.S1-002

T. Ivanova, K. A. Gesheva, M. Kalitzova, F. Hamelmann, F. Luekermann and U. Heinzmann, Journalof Optoelectronics and advanced Materials, 11, 1513 (2009).

I. Navas, R. Vinodkumar, K. J. Lethy, A. P. Detty, V. Ganesan,V. Sathe and V. P. Mahadevan Pillai, J. Phys. D: Appl. Phys., 42, 175305 (2009). https://doi.org/10.1063/1.3137195 DOI: https://doi.org/10.1088/0022-3727/42/17/175305

T. Ivanova, K. A. Gesheva and A. Szekeres, J. Solid State Electrochem., 7, 21 (2002). https://doi.org/10.1007/s10008002-0274-7

I. Shiyanovskaya, H. Ratajczak, J. Baran, and M. Marchewka, J. Mol. Struct., 348, 99 (1995). https://doi.org/10.1016/0022-2860(95)08598-P DOI: https://doi.org/10.1016/0022-2860(95)08598-P

N. E. Stankova, P. A. Atanasov, T. J. Stanimirova, A. O. Dikovska and R. W. Eason, Appl. Surf. Sci., 247, 401 (2005). https://doi.org/10.1016/j.apsusc.2005.01.057 DOI: https://doi.org/10.1016/j.apsusc.2005.01.057

P. R. Patil and P. S. Patil, Thin Solid Films, 382, 13 (2001). https://doi.org/10.1016/S0040-6090(00)01410-3 DOI: https://doi.org/10.1016/S0040-6090(00)01410-3

V. Bhosle, J. Appl. Phys., 97, 083539 (2005). https://doi.org/10.1063/1.1868852 DOI: https://doi.org/10.1063/1.1868852

F. Urbach, Phys. Rev. 92, 627 (1996).

J. Tauc, In: The Optical Properties Solids, Ed. F. Abeles, North-Holland, Amsterdam, 27, 277 (1972).

A. M. Stoneham, Theory of defects in Solids, Clarendon Press, Oxford, 1975.

K. Harikrishna, O. M. Hussain and C. Jullien, Research letters in Nanotechnology, 5, 217510 (2008).

B. W. Faughnan and R. S. Crandall, Appl. Phys. Lettt., 31, 834 (1977). https://doi.org/10.1063/1.89566 DOI: https://doi.org/10.1063/1.89566

Y. Hiruta, M. Kitao and W. Yamada, Jpn. J. Appl. Phys., 23, 1624 (1984). https://doi.org/10.1143/JJAP.23.1624 DOI: https://doi.org/10.1143/JJAP.23.1624

T. Ivanova, K. A. Geshava, G. Popkirov, M. Ganchev and E.Tzvetkova, Mater. Sci. Eng. B., 119, 232 (2005). https:// doi.org/10.1016/j.mseb.2004.12.084 DOI: https://doi.org/10.1016/j.mseb.2004.12.084

V. Madhavi, P. Kondaiah, S. SubbaRayudu, O. M. Hussain, and S. Uthanna, Materials Express, 3, 2158 (2013). DOI: https://doi.org/10.1155/2013/104047

O. M. Hussain, K. S. Rao, K. V. Madhuri, C. V. Ramana, B. S. Naidu, S. Pai, J. John and R. Pinto, Appl. Phys. Mater. Sci. Process., 75, 417 (2002). https://doi.org/10.1016/S09240136(02)00061-4 DOI: https://doi.org/10.1007/s003390100994