Synthesis and Characterization of a-SixCy Thin Films Prepared by RF Magnetron Co-Sputtering Technique


Affiliations

  • VIT University, School of Electronics Engineering, Chennai, Tamil Nadu, 600127, India
  • CIMAP CNRS/CEA/ENSICAEN, Normandie Université, 14050, France
  • VIT University, School of Mechanical and Building Sciences, Chennai, Tamil Nadu, 600127, India

Abstract

Si-C based alloys have attracted much attention due to their potential applications in electronic and optical devices. In this paper, a-SixCy thin films with different Silicon (Si) content are obtained by sputtering of SiC; co-sputtering of SiC and Si targets at different deposition temperatures (Td) such as 200oC, 350oC and 500oC. It is annealed at various annealing temperature (Ta) using conventional thermal annealing (CTA) and Rapid Thermal Annealing (RTA) techniques. The effect of excess Si incorporation and the unintentional oxidation during various stages of sample preparation are discussed. Their structural and optical properties are investigated using spectroscopic ellipsometry, X-Ray Diffraction spectroscopy (XRD), and Fourier Transform Infrared spectroscopy (FTIR). The refractive index value (n1.95eV) varies between 1.6 to 3.6, suggesting the transition from porous silicon carbide to Si-rich silicon carbide or silicon oxycarbide upon increasing Td and Ta, which is also supported by the FTIR spectra. The emergence of absorption peak between ~950 cm−1 and 1100 cm−1 with the increase of Ta and excess silicon is attributed to Si-O a stretching vibration bond which is an indication of Si richness and unintentional oxidation during annealing. Detailed analysis on the process parameters and the evolution of phase transformations are discussed.

Keywords

Annealing, Si-Rich Silicon carbide, Sputtering, Thin Films

Subject Discipline

Material Science, Thin films,

Full Text:

References

W. J. Choyke, H. Matsunami and G. Pensl, ‘Silicon Carbide: Recent Major Advances’, 2nd Edn. Springer, New York, (2003). PMCid:PMC1180594

F. Nava, G. Bertuccio, A. Cavallini and E. Vittones, Meas. Sci. Tech., 19, 102001 (2008). https://doi.org/10.1088/09570233/19/10/102001

P. M. Sarro, Sensor. Actuator. Phys., 82, 210 (2000). https:// doi.org/10.1016/S0924-4247(99)00335-0

J. P. Conde, V. Chu, F. Da Silva, A. Kling, Z. Dai, J. C. Soares, S. Arekat, A. Fedorov, M. N. Berberan-Santos F. Giorgisand C. F. Pirri, J. Appl. Phys., 85, 3327 (1999).

L. Gou, C. Qi, J. Ran, and C. Zheng, Thin Solid Films, 345, 42 (1999). https://doi.org/10.1016/S0040-6090(99)00070-X

A. K. Costa, J. R.Camargo, S. S. Achete and C.A. Carius, Thin Solid Films, 243, 377 (2000)

R. Gerhardt, ‘Silicon carbide based transit time devices’, Moumita Mukherjee: ‘The New Frontier in High-power THz Electronics, in InTech, (2011).

J. Huran, A.Valovič, P. Boháček, V.N Shvetsov, A.P. Kobzev, S.B. Borzakov, A. Kleinov, M.Sekáčová, J.Arbet, and V. Sasinková, Appl. Surf. Sci., 269, 88 (2013). https://doi.org/10.1016/j.apsusc.2012.10.162

A. Karakuscu, A. Ponzoni, P. R. Aravind, G. Sberveglieri, G. D. Soraru, J. Am. Ceram. Soc., 96, 2366 (2013). https://doi.org/10.1111/jace.12491

M. Wilamowska-Zawlocka, P. Puczkarski, Z. Grabowska, J. Kaspar, M. Graczyk-Zajac, R. Riedel and G. D. Soraru, RSC Adv., 6, 104597 (2016).

S. Gallis, V. Nikas and A. E. Kaloyeros, ‘Modern Technologies for Creating the Thin-film Systems and Coatings’: Silicon Oxycarbide Thin films and Nanostructures: Synthesis, Properties and Applications, InTech (2006). PMCid:PMC3660141

J. Y. Fan, X. L. Wu and K. P. K. Chu, Progr. Mater. Sci., 51, 983 (2006). https://doi.org/10.1016/j.pmatsci.2006.02.001

M. A.Ouadfel, A. Keffous, A. Brighet, N. Gabouze, T. Hadjersi, A. Cheriet, M. Kechouane, A. Boukezzata, Y. Boukennous, Y. Belkacem and H. Menari, Appl. Surf. Sci., 265, 94 (2013). https://doi.org/10.1016/j.apsusc.2012.10.129

D. Song, E. C. Cho, Y. H. Cho, G. Conibeer, Y. Huang, S. Huang and M. A. Green, Thin Solid Films, 516, 3824 (2008). https://doi.org/10.1016/j.tsf.2007.06.150

M. Künle, T. Kaltenbach, P. Löper, A. Hartel, S. Janz, O. Eibl and K. G. Nickel, Thin Solid Films, 519, 151 (2010). https:// doi.org/10.1016/j.tsf.2010.07.085

M.Yazdanfar, H. Pedersen, P. Sukkaew, I. G. Ivanov, Ö. Danielsson, O. Kordina and E. Janzén, J. Cry Grow., 390, 24 (2014).

F. Maury, J. M. Agullo, J. Sur and Coat Tech., 1, 19 (1995).

E. Pascual, J. L. Andlijar, E. Fernhndez and E. Bertran, J. Dia. Rel. Mat., 4, 1205, (1995) https://doi.org/10.1016/09259635(95)00296-0

C. Iliescu and D. P. Poenar, ‘Physics and Technology of Silicon Carbide Devices Solution. Chapter 5., PECVD Amorphous Silicon Carbide (α-SiC) Layers for MEMS Applications’, InTech, (2013).

M. Quadfel, C. Yaddaden, S. Merazga, Cheriet, L. Talb, S. Kaci and H. Menari, J. Alloy Comp, 579, 365 (2013).

N. Ledermann, J. Baborowski, P. Muralt, N. Xantopoulos and J. M. Tellenbach, J. Sur. and Coat Tech., 125, 246 (2000).

S. S. Baskar and R. P. Nalini, Mater. Today, 3, 2121 (2016). https://doi.org/10.1016/j.matpr.2016.04.117

H. S. Medeiros, R. S. Pessoa, J. C. Sagás, M. A. Fraga, L. V. Santos, H. S. Maciel, M. Massi, and A. S. Da Silva Sobrinho, Mater. Sci. Forum., 717-720, 197, (2012). https://doi.org/10.4028/www.scientific.net/MSF.717-720.197

J. López-vidrier, S. Hernández, J. Samà, M. Canino, M. Allegrezza and M. Bellettato, J. Mater. Sci. Eng. B., 178(9), 639 (2013). https://doi.org/10.1016/j.mseb.2012.10.015

Y. Rui, S. Li, Y. Cao, J. Xu, W. Li and K. Chen, J. App Sur Sci, 269, 37 (2013).

J. Moon, S. J. Baik, O. Byungsung and J. C. Lee, J. Nanoscale Res Lett, 7, 503, (2012). https://doi.org/10.1186/1556276X-7-503 PMid:22953733 PMCid:PMC3493276

R. Gradmann, P. Loeper, M. Künle, M. Rothfelder, S. Janz, M. Hermle, and S. Glunz, Phys. Status. Solidi. C., 8(3), 831 (2011) https://doi.org/10.1002/pssc.201000176

Y. Peng, J. Zhou, X. Zheng, B. Zhao and X. Tan, J. Mod Phy B, 25(22), 2983 (2011). https://doi.org/10.1142/ S0217979211100412

J. Fan, H. Li, J. Wang and M. Xiao, Appl. Phys. Lett., 101, 131906, 6 (2012).

G. Scardera, T. Puzzer, G. Conibeer, and M. A. Green, J. Appl. Phys.,104, 10, (2008). https://doi.org/10.1063/1.3021158

F. Demichelis, Phys. B Condens. Matter., 205,169 (1995). https://doi.org/10.1016/0921-4526(94)00233-L

S. Janz, ‘Amorphous Silicon Carbide for Photovoltaic Applications’, in KOPS - The Institutional Repository of the University of Konstanz, 1–227, (2006).

Q. Cheng, S. Xu and K. Ostrikov, Acta. Mater., 58(2), 560 (2010). https://doi.org/10.1016/j.actamat.2009.09.034

A. Kole and P. Chaudhuri, Thin Solid Films, 522, 45 (2012). https://doi.org/10.1016/j.tsf.2012.02.078

G. Chang, F. Ma, D. Ma and K. Xu, Nanotechnology, 21, 465605 (2010). https://doi.org/10.1088/0957-4484/21/46/465605 PMid:20975214

X. J. Hao, E.-C. Cho, G. Scardera, Y. S. Shen, E. BelletAmalric, D. Bellet, G. Conibeer and M. A. Green, Sol. Energ. Mater. Sol. Cell., 93, 1524 (2009). https://doi.org/10.1016/j.solmat.2009.04.002

G. Wen, X. Zeng, W. Liao and C. Cao, Thin Solid Films, 552, 18 (2014). https://doi.org/10.1016/j.tsf.2013.12.001

T. Rajagopalan, X. Wang, B. Lahlouh, C. Ramkumar, P. Dutta and S. Gangopadhyay, J. Appl. Phy., 94, 5252 (2003). https://doi.org/10.1063/1.1609631

K. Surana, H. Lepage, J. M. Lebrun, B. Doisneau, D. Bellet, L. Vandroux, G. Le Carval, M. Baudrit, P. Thony and P. Mur, Nanotechnology, 23, 105401 (2012). https://doi.org/10.1088/0957-4484/23/10/105401 PMid:22348886

S. W. King, M. French, J. Bielefeld and W. A. Lanford, J. Non. Cryst. Solids, 357, 2970 (2011). https://doi.org/10.1016/j.jnoncrysol.2011.04.001

S. Kerdiles, A. Berthelot, F. Gourbilleau and R. Rizk, Appl. Phys. Lett., 76, 24 (2000). https://doi.org/10.1063/1.126350

S. Yamada, Y. Kurokawa, S. Miyajima and M. Konagai, Nanoscale Research Letters, 9, 246 (2014) https://doi.org/10.1186/1556-276X-9-246

D. Krcho, ‘FTIR Spectroscopy for Silicon Solar Cell’ in Characterisation Proceedings of Solar ‘97 - Australian and New Zealand Solar Energy Society (1997).


Refbacks

  • There are currently no refbacks.