Effect of Growing Conditions and Post Treatments on Calcium Phosphate Films Obtained by Electrode Position


Affiliations

  • Universidad Autónoma de Manizales, Departamento de física y matemática, Manizales, Caldas, Colombia
  • Universidad Autónoma de Manizales, Departamento de electrónica y automatización, Manizales, Caldas, Colombia
  • Instituto Politécnico Nacional, Centro de Investigación y de Estudios Avanzados del, Querétaro, 76230, Mexico
  • Instituto Politécnico Nacional, Centro de Investigación y de Estudios Avanzados del, Queretaro, 76230, Mexico

Abstract

The effect of growing conditions and post treatments in electrodeposited calcium phosphate films on 316 L stainless steel is presented. The concentration and pH of electrolyte solution and the potential values for the electrodeposition process were determined based on a study of cyclic voltammetry curves. The electrolyte concentration was fixed at 0.025 M ((NH4) H2PO4) and 0.042 M (Ca(NO3)2.4H2O), choosing a pH = 5 as the better condition for the films deposition. In addition, the electrolyte temperature was varied between room temperature and 60°C to determine the influence of this parameter on the deposited films. Films were characterized using Fourier Transform Infrared Spectroscopy, X-ray diffraction and Scanning electron microscopy equipped with energy dispersive spectroscopy. The as deposited films at -1.2 V and -1.7 V exhibit the dicalcium phosphate dihydrate phase (Brushite) while thermal post treatment favor the formation of octacalcium phosphate in amorphous phase, and basic treatment tend to produce the Hydroxyapatite phase. The suggested mechanism for the HAp phase formation, after the basic treatment, consists in providing the necessary OH- groups to complete the synthesis process.

Keywords

Brushite, Calcium Phosphate, Electrodeposition, Hydroxyapatite

Full Text:

References

L. Vecbiskena, ‘Nano-Sized Calcium Phosphates: Synthesis Technique and Their Potential in Biomedicine’; de Recent Global Research and Education: Technological Challenges, 25 (2017).

M. Ebrahimi, M. G. Botelho and S. V. Dorozhkin, Mater. Sci. Eng., 71, 1293 (2017). https://doi.org/10.1016/j.msec.2016.11.039 PMid:27987685

A. Szcześ, L. Hołysz and E. Chibowski, Adv. Colloid Interface Sci., 20, 4 (2017).

S. A. Oma, J. Ballare and S. M. Ceré, Electrochim. Acta, 203, 309 (2016). https://doi.org/10.1016/j.electacta.2016.01.051

S. Agarwala, J. Curtin, B. Duffy and S. Jaiswal, Mater. Sci. Eng. C, 68, 948 (2016.)

A. Aziz, R. Backly, N. Taha, A. Maghraby and S. Kandil, Mater. Sci. Eng. C, 76, 1188 (2017). https://doi.org/10.1016/j.msec.2017.02.053 PMid:28482485

L. Leena and S. S. Bhupinder, Journal of Nanomaterials and Molecular Nanotechnology, 4, 1 (2015).

N. Tshepo P., T. Mira, H. Margit, H. B. Robert and T. Chris, Surf. Coating. Tech., 294, 153 (2016). https://doi.org/10.1016/j.surfcoat.2016.03.045

G. R. Bojan, V. Miroljub, Š. Maja, V. S. Nikola S. and R. A. Nenad, Ceram. Int., 42, 411 (2016).

M. A. Cruza, G. Ruiza, A. Faria, D. Zancanela, L. Pereira, L. Ciancaglinia and A. Ramosa, Appl. Surf. Sci., 370, 459 (2016). https://doi.org/10.1016/j.apsusc.2015.12.250

R. Asria and W. Harunb, Journal of the Mechanical Behavior of Biomedical Materials, 57, 95 (2016). https://doi.org/10.1016/j.jmbbm.2015.11.031 PMid:26707027

D. Sidane, H. Rammal, A. Beljebbar, S. C. Gangloff, D. Chicot, F. Velard, H. Khirredine, A. Montagne and H. Kerdjoudj, Mater. Sci. Eng. C, 72, 650 (2017). https://doi.org/10.1016/j.msec.2016.11.129 PMid:28024634

J. Ballarre, D. Lopez, W. Schreiner, A. Duran and S. M. Cere, Appl. Surf. Sci., 253, 7260 (2007). https://doi.org/10.1016/j.apsusc.2007.03.007

Y. Zeng, X. Pei, S. Yang, H. Qin, H. Caid, S. Hu, L. Suig, Q. Wan and J. Wangd, Surf. Coating Tec., 286, 72 (2016). https://doi.org/10.1016/j.surfcoat.2015.12.013

D. H. He, P. Wang, P. Liu, X. K. Liu, F. C. Ma and J. Zhao, Surf. Coating Tec., 301, 6 (2016). https://doi.org/10.1016/j.surfcoat.2016.07.005

A. Vladescua, M. Braic, F. Ak Azem, I. Titorencu, V. Braic, V. Pruna, A. Kiss, A. C. Parau and I. Birlik, Appl. Surf. Sci., 354, 373 (2015). https://doi.org/10.1016/j.apsusc.2015.05.059

D.-Y. Lin and X.-X. Wang, Colloids and Surfaces B: Biointerfaces, 82, 637 (2011). https://doi.org/10.1016/j.colsurfb.2010.09.025 PMid:20965703

R. A. Surmenev, M. A. Surmeneva and A. A. Ivanova, Acta Biomaterialia, 10, 557 (2014). https://doi.org/10.1016/j.actbio.2013.10.036 PMid:24211734

B. Ben-Nissan, C. Chai and L. Evans, ‘Crystallographic and spectroscopic characterization and morphology of biogenic and synthetic apatites’; Encyclopedic Handbook of Biomaterials and Bioengineering: Part B. New York: Marcel Dekker, (1995).

C. Ocampo, D. Villegas and L. Veleva, J. Electrochem. Soc., 152, C692 (2005). https://doi.org/10.1149/1.2030355

D. Lin and X. Wang, Surf. Coating Tec., 204, 3205 (2010). https://doi.org/10.1016/j.surfcoat.2010.03.020

M. C. Wang, H. T. Chen, W. J. Shih, H. F. Chang, M. H. Hon and I. M. Hung, Ceram. Int., 41, 2999 (2015). https://doi.org/10.1016/j.ceramint.2014.10.135

W. Wu and G. Nancollas, Pure Appl. Chem., 70, 1867 (1998). https://doi.org/10.1351/pac199870101867

E. Meng, S. Guan, H. Wang, L. Wang, S. Z. J. Hu, C. Ren, J. Gao and Y. Feng, Appl. Surf. Sci., 257, 4811 (2011). https:// doi.org/10.1016/j.apsusc.2010.12.073

D. Gopi, V. Collins, A. Prakash, L. Kavitha, S. Kannan, P. Bhalaji, E. Shinyjoy and J. Ferreira, Corrosion Sci., 53, 2328 (2011). https://doi.org/10.1016/j.corsci.2011.03.018

A. Tsetsekou, D. Brasinika, V. Vaou and E. Chatzitheodoridis, Mater. Sci. Eng. C., 43, 555 (2014). https://doi.org/10.1016/j.msec.2014.07.011 PMid:25175250

M. B. Kannan, Surf Coating Tech., 301, 36 (2016). https:// doi.org/10.1016/j.surfcoat.2015.12.044

W. J. Shih, Y. H. Chen, S. H. Wang, W. L. Li, M. H. Hon and M. C. Wang, J. Cryst. Growth, 285, 633 (2005). https://doi.org/10.1016/j.jcrysgro.2005.08.042

M. Falk, Spectrochim. Acta., 40, 43 (1984). https://doi.org/10.1016/0584-8539(84)80027-6

B. S. I. Petrov, Spectrochim. Acta., 23A, 2637 (1967). https:// doi.org/10.1016/0584-8539(67)80155-7

D. Gopi, J. Indira and L. Kavitha, Surf Coating Tech., 206, 2859 (2013). https://doi.org/10.1016/j.surfcoat.2011.12.011

P. Kamalanathan, S. Ramesh, L. Bang, A. Niakan, C. Tan, J.Purbolaksono, H. Chandran and W. Teng, Ceram. Int., 40, 1634 (2014). https://doi.org/10.1016/j.ceramint.2014.07.074

E. Boanini, M. Gazzano and A. Bigi, Acta Biomater, 6, 1882 (2010). https://doi.org/10.1016/j.actbio.2009.12.041 PMid:20040384

R. LeGeros, J. LeGeros, O. Trautz and E. Klein, Dev. Appl. Spectrosc., 7, 3 (1970). https://doi.org/10.1007/978-1-4684-8589-9_1

J. Katic, M. Metikos-Hukovi, S. Skapin, M. Petravic and M. Varasanec, Electrochim. Acta, 127, 173 (2014). https://doi.org/10.1016/j.electacta.2014.01.168

K. Ohta, M. Kikuchi, J. Tanaka and H. Eda, Chem. Lett., 31 (2002). https://doi.org/10.1246/cl.2002.894

M. S. Shojai, M. T. Khorasani and A. Jamshidi, J. Cryst. Growth, 361, 73 (2012). https://doi.org/10.1016/j.jcrysgro. 2012.09.010

S. Arifuzzaman and S. Rohani, J. Cryst. Growth, 267, 624 (2004). https://doi.org/10.1016/j.jcrysgro.2004.04.024

R. Alvarez, L. A. Evans, P. J. Milham and M. A. Wilson, Geoderma, 118, 245 (2004). https://doi.org/10.1016/S00167061(03)00207-6

S. Dorozhkin, Calcium Orthophosphates, ‘Applications in Nature’; Singapore: Temasek, Boulevard (2012)

S. Ramesh, C. Y. Tan, M. Hamdi, I. Sopyan and W. D. Teng, ‘The influence of Ca/P ratio on the properties of hydroxyapatite bioceramics’; de International Conference on Smart Materials and Nanotechnology in Engineering (2007).


Refbacks

  • There are currently no refbacks.