Protein Adsorption on Biomaterial Surfaces: Subsequent Conformational and Biological Consequences – A Review

Jump To References Section

Authors

  • Senior Scientist, Integrated Pharmaceuticals, 310 Authority Drive, Fitchberg – MA 01420, USA; 102, Vassar Street, Worcester – MA 01602 ,US

DOI:

https://doi.org/10.18311/jsst/2020/23282

Keywords:

Bacteria and Cell Adhesion, Biocompatibility, Biofouling, Blood Coagulation, Contact Angle, Gibbs' Surface Excess, Hydrophobicity, Protein Adsorption, Vroman Effect

Abstract

Protein adsorption on solid surfaces is an immensely complex event comprising versatile biological and physico-chemical factors. This review focuses to ascertain the nature and biocompatibility of solid matrices essential for the medical needs during prosthetic implantations. It deals with number of important factors; nature of the biomaterial surfaces, the native protein structure, and induced configurational changes during the adsorbed state, andphysico-chemical influences liable for the event. The adsorption process demonstrates that solid surfaces are enabling to alter the protein structure. The conversion of neutral zymogens factor XII, and factor VII (FXII and FVII) to active enzymatic state (FXIIa and FVIIa) initiating the blood coagulation cascade following intrinsic or extrinsic pathway is a prime example regarding the configuration alteration during adsorbed state compared to its nativestate. Additionally, the activation of the complement cascade arises as a result of immune activation due to the adsorbed proteins on solid matrices. It is well known that interfacial tension compels the protein molecules to alter their structure, and is the prime factor behind the configuration transformation. Influences like contact angle, wettability, zeta potential and hydrophobicity along with other inter-aligned forces are involved. It is found that hydrophobic surfaces allow more proteins to bind but fail to activate the coagulation cascade. Contrarily, hydrophilic surfaces despite the feeble adsorption ability impose adequate changes to induce the enzymatic action. The nature of adsorption at the stationary state has been explained following the Gibbs' model of surface excess, Langmuir or any of the equivalent paradigms. But uniqueness in adsorption behavior is noticed in the ‘Vroman effect' while undergoing multiple protein interaction on the solid surfaces. Additionally, the property of cell adhesion heavily relies on the surface matter. Hydrophobicity, surface charge, chemical composition, and topography concertedly play crucial role. Further, prior adsorption of proteins on the adsorbent imposes profound effect on the cell and microbial adhesions which obviously depends on the character of proteins, and cells including the surface chemical composition of the adsorbents. The incident of bio-fouling which often enforces harmful effect arising from various implants is primarily instigated by the adsorption of proteins leading to subsequent invasion prompted by the immune cells. For avoidance, special categories of biomaterials are in the process of manufacturing. Despite having numerous adverse effects, cellular adhesion also shows few beneficial roles, like enhancing the growth of human vein endothelium cells and neurons. The adhesion of bacteria or microorganisms on many solid surfaces induces significantly different effects maintaining their longer survival period.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2020-08-20

How to Cite

Mitra, S. P. (2020). Protein Adsorption on Biomaterial Surfaces: Subsequent Conformational and Biological Consequences – A Review. Journal of Surface Science and Technology, 36(1-2), 07–38. https://doi.org/10.18311/jsst/2020/23282

Issue

Section

Articles
Received 2019-02-04
Accepted 2020-03-03
Published 2020-08-20

 

References

T. A. Horbett, J. L Brash. In: Proteins at Interfaces II. Fundamentals and Applications, ACS Symp. Washington D.C.; 1995. https://doi.org/10.1021/bk-1995-0602. DOI: https://doi.org/10.1021/bk-1995-0602

P. Billstein, M. Wahlgren, T. Arnebrant, J. McGuite, H. J. Elwing. Colloid Interface Sci., 175, 77 (1995). https://doi. org/10.1006/jcis.1995.1431. DOI: https://doi.org/10.1006/jcis.1995.1431

R. Barbucci, A. Magnani. Biomater., 15, 955 (1994). https:// doi.org/10.1016/0142-9612(94)90075-2. DOI: https://doi.org/10.1016/0142-9612(94)90075-2

F. Fang, I. Szleiter. Biophysical J., 80, 2568 (2001). https:// doi.org/10.1016/S0006-3495(01)76228-5. DOI: https://doi.org/10.1016/S0006-3495(01)76228-5

L. Vroman. Materials., 2, 1547 (2009). https://doi. org/10.3390/ma2041547. PMCid: PMC5513385. DOI: https://doi.org/10.3390/ma2041547

L. Vroman. Thromb. Diath. Haem., 10, 455 (1963). https:// doi.org/10.1055/s-0038-1654798. DOI: https://doi.org/10.1055/s-0038-1654798

S. P. Mitra, H. Y. K. Chuang. J. Biomed. Res., 18, 695 (1984). https://doi.org/10.1002/jbm.820180610. PMid: 6544771. DOI: https://doi.org/10.1002/jbm.820180610

www.asminternational.org/bookstore - Overview of Biomaterials and their use in Medical Devices.

N. Onar. Usage of Biopolymers in Medical Applications. In: 3rd Indo-Czech Textile Conference, Istanbul, Turky; 2004.

C. M. Agarwal. Introduction to Biomaterials, Cambridge University Press, Cambridge CB28BS, UK; 2014.

S. P. Mitra. J. Surface Sci. Technol., 27, 15 (2011).

L. Bacakova, E. Filova, F. Rypack, V. Svorcic, V. Stary. Physiol. Res. (Suppl.1), 53, S35 (2004).

H. Chang, Y. Wang. In: Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds, Regenerative Medicine and Tissue Engineering- Cells and Biomaterials. Ed. D. Eberli, Intech China, Unit 405, Office block Hotel Equatorial Shanghai, No 65, Yan An Road (West), Shanghai, 200040, China; 2011. DOI: https://doi.org/10.5772/21983

D. F. William. Biomaterials, 30, 5879 (2009). https://doi. org/10.1016/j.biomaterials.2009.07.027. PMid:19651435.

D. M. Hilton, S. W. Shalaby, R. A. Latour. J. Biomed. Mater. Res., 73A, 349 (2005). https://doi.org/10.1002/jbm.a.30295. PMid: 15834930. DOI: https://doi.org/10.1002/jbm.a.30295

S. Lemon, L. C. Lucas. J. Arthroplasty., 1, 143 (1986). https:// doi.org/10.1016/S0883-5403(86)80053-5. DOI: https://doi.org/10.1016/S0883-5403(86)80053-5

J. Andersson, K. Nilsson-Ekdhal, R. Larsson, U. R. Nilsson, B. Nilsson. J. Immunol., 168, 5786 (2002). https://doi. org/10.4049/jimmunol.168.11.5786. PMid: 12023380. DOI: https://doi.org/10.4049/jimmunol.168.11.5786

G. Krishnamurthy, P. K. Sehgal, A. B. Mandal. J. Biomed. Mater. Res: Part A, 101A, 1173 (2013). https://doi. org/10.1016/j.saa.2012.11.068. PMid: 23274258. DOI: https://doi.org/10.1002/jbm.a.34411

K. Chatterjee, J. L. Thornton, J. W. Baur, E. A. Voglar, C. A. Siedlecki. Biomater., 30, 4915 (2009). https://doi. org/10.1016/j.biomaterials.2009.05.076. PMid: 19552950, PMCid: PMC2749226. DOI: https://doi.org/10.1016/j.biomaterials.2009.05.076

J. W. Bauer, L. C. Xu, E. A. Voglar, C. A. Siedlecki. Biointerphases, 12, 02D410-1 (2017). https://doi.org/10.1116/1.4983634. PMid: 28514863, PMCid: PMC5435513. DOI: https://doi.org/10.1116/1.4983634

J. Y. C. Chan, C. E. Burrows, H. Z. Moval. Agents and Actions, 8, 65 (1978). DOI: https://doi.org/10.1007/BF01972404

T. Rene, A. H. Schmaier, C. Muss. Blood, 120, 4296 (2012). https://doi.org/10.1182/blood-2012-07-292094. PMid: 22993391, PMCid: PMC3507141. DOI: https://doi.org/10.1182/blood-2012-07-292094

C. Sperling, M. F. Maitz, S. Grasso, W. Crasten, S. M. Kanse, ACS Applied Mater and Interf., 9, 40107 (2017). https://doi. org/10.1021/acsami.7b14281. PMid: 29091393. DOI: https://doi.org/10.1021/acsami.7b14281

L. Muhl, K. Hersenmeyer, K. Preissner, T. Weimer, S. M. Kanse. FEBS Lett. 583, 1994 (2009). https://doi. org/10.1016/j.febslet.2009.05.012. PMid: 19446554. DOI: https://doi.org/10.1016/j.febslet.2009.05.012

J. W. Bryant, Z. Shariat-Madar. Cardiovasc. Haematol Agents Med. Chem., 7, 234 (2009). https://doi. org/10.2174/187152509789105444. PMid: 19689262. DOI: https://doi.org/10.2174/187152509789105444

J. H. Griffin. Proc. Natl. Acad. Sci. (USA), 75, 1998 (1978). DOI: https://doi.org/10.1073/pnas.75.4.1998

J. Cuen J, Q. Wu, J. Thromb. Haemost, 8, 1670 (2010). DOI: https://doi.org/10.1111/j.1538-7836.2010.03893.x

S. Yamamichi, Y. Fujiwara, T. Kikuchi, M. Nishitani, Y. Matsushita, K. Hasumi. Biochem. Biophys. Res. Comm., 409, 483 (2011). https://doi.org/10.1016/j.bbrc.2011.05.030. PMid: 21600885. DOI: https://doi.org/10.1016/j.bbrc.2011.05.030

C. F. Jones, R. A. Campbella, A. E. Brooks, S. Assemi, S. Tadjiki, G. Thiagarajan, C. Mulcock, A. S. Weirich, B. D. Brooks, H. Ghandehari, D. W. Granger. ACS Nano, 6, 9900 (2012). https://doi.org/10.1021/nn303472r. PMid: 23062017, PMCid: PMC3532938. DOI: https://doi.org/10.1021/nn303472r

C. F. Jones, R. A. Campbella, Z. Franks, C. C. Gibson, G. Thiagarajan, V. Abreu, S. Sukavaneshvar, S. F. Mohammad, D. Y. Li, H. Ghandaheri, A. S. Weyrich, B. D. Brooks, D. W. Grainger. Mol. Pharmaceutics, 9, 1599 (2012). https:// doi.org/10.1021/mp2006054. PMid: 22497592, PMCid: PMC3367133. DOI: https://doi.org/10.1021/mp2006054

Q. Huang, P. F. Neuenschwander, A. R. Rezaie, J. H. Morrissey. J. Biol. Chem., 271, 21752 (1996). https://doi. org/10.1074/jbc.271.36.21752. PMid: 8702971. DOI: https://doi.org/10.1074/jbc.271.36.21752

M. Toda, T. Kitazawa, I. Hirata, Y. Hirano, H. Iwata. Biomaterials, 29, 407 (2008). https://doi.org/10.1016/j.biomaterials. 2007.10.005. PMid: 17950841. DOI: https://doi.org/10.1016/j.biomaterials.2007.10.005

C. Sperling, M. F. Maitz, S. Talkenberger, M. F. Gouzy, T. Groth, C. Werner. Biomaterials, 28, 3617 (2007). https://doi. org/10.1016/j.biomaterials.2007.04.041. PMid: 17524475. DOI: https://doi.org/10.1016/j.biomaterials.2007.04.041

A. Engberg, J. P. Rosengren-Holmberg, H. Chen, B. Nilson, J. D. Lambris, I. A. Nicholls, K. N. Ekdahl. J. Biomed. Mater. Res. Part A, 97A, 74 (2011). https://doi.org/10.1002/ jbm.a.33030. PMid: 21319295, PMCid: PMC3102127. DOI: https://doi.org/10.1002/jbm.a.33030

L. C. Xu, J. Baur, C. A. Siedlecki. Colloids Surf -B Biointerf., 124, 49 (2014). https://doi.org/10.1016/j.colsurfb. 2014.09.040. PMid: 25448722, PMCid: PMC5001692.

K. C. Dee, D. A. Puleo, R. Bizios. Protein-Surface Interactions. Wiley; 2002. ISBN: 978-0-471-25394-5.

R. E. Bair, A. E. Meyer. Physicochemical Aspects of Polymer Surfaces, Ed. K. L. Mittal, Plenum Press, N. Y.; 1981. 2, 805.

R. E. Bair, R. C. Dutton, V. L. Gott. Surface Chemistry of Biological System. In: OnSurface Chemistry of Bio Systems, Ed. M. Blank, Plenum Press, N. Y.; Proc. Amer. Chem. Soc. Symp., 235 (1969).

E. A. Voglar. Adv. Colloid Interface Sci., 74, 69 (1998). https://doi.org/10.1016/S0001-8686(97)00040-7. DOI: https://doi.org/10.1016/S0001-8686(97)00040-7

C. E. Lee, J. E. McCammon, P. J. Rosky. J. Chem. Phys., 80, 4448 (1984). https://doi.org/10.1063/1.447226. DOI: https://doi.org/10.1063/1.447226

J. D. Andrade, V. Hlady. Plasma Protein Adsorption: The Big Twelve. In: Blood in Contact with Artificial Surfaces. Ann. NY. Acad. Sci., 516, 158 (1987). https://doi. org/10.1111/j.1749-6632.1987.tb33038.x. PMid: 3439723. DOI: https://doi.org/10.1111/j.1749-6632.1987.tb33038.x

E. A. Vogler. Interfacial Chemistry in Biomaterials Science. In: Wettability. J. Berg, ed., Surfactant Science Series, Vol. 49, Marcel Dekker, New York; 1993. p. 184. https://personal. ems.psu.edu/~vogler/preprint%20pdfs/Jung%20 lim%20jbmr%20paper%20fnl2%20wrd6.pdf.

J. M. Goddard, J. H. Hotchkiss. Progress in Polymer Sci., 32, 698 (2002). https://doi.org/10.1016/j.progpolymsci. 2007.04.002. DOI: https://doi.org/10.1016/j.progpolymsci.2007.04.002

E. A. Voglar. Biomaterials, 33, 1201 (2012). https://doi. org/10.1016/j.biomaterials.2011.10.059. PMid: 22088888, PMCid: PMC3278642.

L. J. Lis, N. McAlister, R. P. Rand, V. A. Parsegian. Biophys. J., 198, 657 (1988).

B. M. Law, J. Colloid. Interface Sci., 134, 1 (1990). https:// doi.org/10.1016/0021-9797(90)90247-L. DOI: https://doi.org/10.1016/0021-9797(90)90247-L

C. Bermudez-Saguero, J. Gracia-Fadrique. J. Phys. Chem. B, 119, 5598 (2015). https://doi.org/10.1021/acs.jpcb.5b01436. PMid: 25853275. DOI: https://doi.org/10.1021/acs.jpcb.5b01436

M. Beatrice, P. Huyghes - Despointes, C. Nick-Pace, S. Walter-Englander, J. Martin Schlotz. Measuring the Conformational Stability of a Protein by Hydrogen Exchange. In: Protein Structure, Stability and Folding, Ed. K. P. Murphy Humana Press Inc. Totowa, NJ; Methods in Mol. Biol., 168 (2001),

R. Latour. Biomaterials: Protein-Surface Interactions. In: Encyclopedia of Biomaterials and biomedical engineering, Taylor and Francis; Philadelphia, PA; 2005. p. 1.

W. Adamson, A. P. Gast, Physical chemistry of surfaces, 6th edition, Wiley Interscience, John Wiley, New York; 2012.

A. W. Newman, R. J. Good, C. J. Hope, M. Sejpal. J. Colloid Interface Sci., 49, 291 (1974). https://doi.org/10.1016/0021- 9797(74)90365-8. DOI: https://doi.org/10.1016/0021-9797(74)90365-8

D. K. Chattoraj, K. S. Birdi. Adsorption and the Gibbs' Surface Excess. Plenum Press, NY; 1984. https://doi. org/10.1007/978-1-4615-8333-2. PMCid: PMC391943. DOI: https://doi.org/10.1007/978-1-4615-8333-2

N. V. Churaev. Adv. Colloid Interface Sci., 58, 87 (1995). https://doi.org/10.1016/0001-8686(95)00245-L. DOI: https://doi.org/10.1016/0001-8686(95)00245-L

E. A. Vogler, D. A. Martin, D. B. Montgomary, J. C. Graper. Lnagmuir, 9, 497 (1993). https://doi.org/10.1021/ la00026a023. DOI: https://doi.org/10.1021/la00026a023

J. C. Berg. Wettabiity. In: J. C. Berg (Ed), Surfactant Science Series, Marcel Dekker, New York; 1993. 49, p. 76.

E. A. Vogler, J. C. Graper, H. W. Sugg, L. M. Lander, W. J. Brittain. J. Biomed. Mater. Res., 29, 1017 (1995). https://doi. org/10.1002/jbm.820290814. PMid: 7593032. DOI: https://doi.org/10.1002/jbm.820290814

C.A. Haynes, W. Norde. Colloids and Surfaces B: Biointerfaces, 2, 517 (1994). https://doi.org/10.1016/0927- 7765(94)80066-9. DOI: https://doi.org/10.1016/0927-7765(94)80066-9

M. D. Pieschbacher, S. Ruoslahti. Nature, 309, 30 (1984). https://doi.org/10.1038/309030a0. PMid: 6325925. DOI: https://doi.org/10.1038/309030a0

K. Kubiak, Z. Adamczyk, M. Wasilewska. J. Colloid Interface Sci., 457, 378 (2015). https://doi.org/10.1016/j. jcis.2015.07.009. PMid: 26209759. DOI: https://doi.org/10.1016/j.jcis.2015.07.009

P. F. Brode III, C. R. Erwin, D. S. Rauch, D. S. Lucas, D. N. Rubingh. J. Biol. Chem., 269, 23538 (1994). DOI: https://doi.org/10.1016/S0021-9258(17)31549-1

H. Xu, J. Lu, D. E. Williams DE. J. Phys. Chem B, 110, 1907 (2006). https://doi.org/10.1021/jp0538161. PMid: 16471762. DOI: https://doi.org/10.1021/jp0538161

Y. Wei, A. A. Thyparambil, Y. Wu, R. A. Latour. Langmuir., 30, 14849 (2014). https://doi.org/10.1021/la503854a. PMid: 25420087, PMCid: PMC4270395. DOI: https://doi.org/10.1021/la503854a

M. H. V. van Regenmortel. Structure of Antigen's. CRC Press, Corporate Blvd, NW, Boca Raton, FL; Vol 1, p. 218.

C.F. Wertz CF, M. M. Santore. Langmuir., 18, 706 (2002). https://doi.org/10.1021/la011075z. DOI: https://doi.org/10.1021/la011075z

L. Vroman, A. L. Adams, G. C. Fischer, P. C. Munoz. Blood., 55, 156 (1980). https://doi.org/10.1182/blood.V55.1.156. bloodjournal551156. PMid: 7350935. DOI: https://doi.org/10.1182/blood.V55.1.156.bloodjournal551156

D. K. Chattoraj, S. P. Mitra. Ind. J. Biochem. Biophys., 14, 1 (1977).

M. Rabe, D. Verdes, S. Seeger. Adv. Colloid Interface, 162, 87 (2011). https://doi.org/10.1016/j.cis.2010.12.007. PMid: 21295764. DOI: https://doi.org/10.1016/j.cis.2010.12.007

C.F. Wertz, M. M. Santore. Langmuir., 15, 8884 (1999). https://doi.org/10.1021/la990089q. DOI: https://doi.org/10.1021/la990089q

E. A. Vogler. Biomaterials, 33, 1201 (2012). https://doi. org/10.1016/j.biomaterials.2011.10.059. PMid: 22088888, PMCid: PMC3278642. DOI: https://doi.org/10.1016/j.biomaterials.2011.10.059

I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918). https://doi.org/10.1021/ja02242a004. DOI: https://doi.org/10.1021/ja02242a004

R. A. Latour. J. Biomed. Mater. Res., 103A, 949 (2015). https://doi.org/10.1002/jbm.a.35235. PMid: 24853075. DOI: https://doi.org/10.1002/jbm.a.35235

H. Lineweaver, D. Burk. J. Amer. Chem. Soc., 56, 658 (1934). https://doi.org/10.1021/ja01318a036. DOI: https://doi.org/10.1021/ja01318a036

G. L. Atkins, I. A. Nimmo. Biochem. J., 149, 775 (1975). https://doi.org/10.1042/bj1490775. PMid: 1201002, PMCid: PMC1165686. DOI: https://doi.org/10.1042/bj1490775

G. Scatchard. In: The Attraction of Proteins for Small Molecules and Ions, Anal. NY. Acad. Sci., 51, 660 (1949). https://doi.org/10.1111/j.1749-6632.1949.tb27297.x. DOI: https://doi.org/10.1111/j.1749-6632.1949.tb27297.x

A. L. Lehninger, D. L. Nelson, M. M. Cox. Lehninger, Principles of Biochemistry, W.H. Freeman, New York; 2005.

W. Norde, J. Lyklema. J. Colloid. Interface Sci., 7, 350 (1979). https://doi.org/10.1016/0021-9797(79)90245-5. DOI: https://doi.org/10.1016/0021-9797(79)90245-5

V. Hilady, J. Buijs. Curr. Opin. Biotechnol., 7, 72 (1996). https://doi.org/10.1016/S0958-1669(96)80098-X. DOI: https://doi.org/10.1016/S0958-1669(96)80098-X

S. L. Hirsch, D. R. McKenzie, N. J. Nosworthy, J. A. Denman, O. U. Sezerman, M. M. Bilek. Colloids. Surf B: Biointerafces., 103, 395 (2013). https://doi.org/10.1016/j. colsurfb.2012.10.039. PMid: 23261559. DOI: https://doi.org/10.1016/j.colsurfb.2012.10.039

S. Y. Jung, S. M. Lim, F. Albertorio, G. Kim, M. C. Gurau, R. D. Yang, M. A. Holden, P. S. Cremer. J. Am. Chem. Soc. 125, 12782 (2003). https://doi.org/10.1021/ja037263o. PMid: 14558825. DOI: https://doi.org/10.1021/ja037263o

P. Turbill, T. Beugeling, A. A. Poot. Biomaterials, 17, 1279 (1996). https://doi.org/10.1016/S0142-9612(96)80004-4. DOI: https://doi.org/10.1016/S0142-9612(96)80004-4

P. Vilaseca, K. A. Dawson, G. Franzese, Cornel University. arXiv: 1202.3796; 2012.

I.Lundstrom, H. Elwing, J. Colloid. Interface Sci., 136, 68 (1990). https://doi.org/10.1016/0021-9797(90)90079-4. DOI: https://doi.org/10.1016/0021-9797(90)90079-4

H. Elwing, A. Askenda, B. Ivarsson, U. Nilsson, S. Welin, I. Lundstrom. Protein Adsorption on Solid Surfaces: Physical Studies and Biological Model Reactions. In: Proteins at Interfaces, Am. Chem. Soc., Ch-29, 468 (1987). https://doi. org/10.1021/bk-1987-0343.ch029. DOI: https://doi.org/10.1021/bk-1987-0343.ch029

P. A. Cuypers, G. M. Willems, H. C. Hemker, W. T. Hermens. Adsorption Kinetics of Protein Mixtures: A Tentative Explanation of the Vroman Effect. In: Blood in Contact with Natural and Artificial Surfaces, Annals. NY. Acad. Sci.,516, 244 (1987). DOI: https://doi.org/10.1111/j.1749-6632.1987.tb33045.x

Lassen, M. Malmsten. J. Colloid. Interface. Sci., 186, 9 (1997). https://doi.org/10.1006/jcis.1996.4529. PMid: 9056289. DOI: https://doi.org/10.1006/jcis.1996.4529

M. Santore, F. W. Christian. Langmuir, 21, 10172 (2005). https://doi.org/10.1021/la051059s. PMid: 16229542. DOI: https://doi.org/10.1021/la051059s

W. K. Lee, J. Mcguire, M. K. Bothwell. J. Colloid Inetrface Sci. 269, 251(2004). https://doi.org/10.1016/j.jcis.2003.07.009. PMid: 14651918. DOI: https://doi.org/10.1016/j.jcis.2003.07.009

D. Eisenberg. Proc. Natl. Acad. Sci. (USA), 100, 11207 (2003). https://doi.org/10.1073/pnas.2034522100. PMid: 12966187, PMCid: PMC208735. DOI: https://doi.org/10.1073/pnas.2034522100

G. N. Ramachandran, C. Ramakrishnan C, V. Sasisekharan. J. Mol. Biol., 7, 95 (1963). https://doi.org/10.1016/S0022- 2836(63)80023-6. DOI: https://doi.org/10.1016/S0022-2836(63)80023-6

S. P. Mitra, D. K. Chattoraj. Ind. J. Biochem. Biophys., 15, 239 (1978).

L. Yu, L. Zhang, Y. Sun. J. Chromat. A, 1382, 118 (2015). https://doi.org/10.1016/j.chroma.2014.12.087. PMid: 25601319. DOI: https://doi.org/10.1016/j.chroma.2014.12.087

P. Warkenlin, B. Walivaara, I. Lundstrom, P. Tengavall. Biomaterials, 15, 786 (1994). https://doi.org/10.1016/0142- 9612(94)90033-7.

J. Meissaner, A. Prause, B. Bharti, G. H. Findenegg. Colloid Polym. Sci., 293, 3381 (2015). https://doi. org/10.1007/s00396-015-3754-x. PMid: 26617429, PMCid: PMC4654746. DOI: https://doi.org/10.1007/s00396-015-3754-x

Sickle Cell Disease. US National Library of Medicine. https:// ghr.nih.gov/condition/sickle-cell-disease.

J. D. Andrade, V. Hlady. Adv. Polymer Sci. 79, 3 (1986).

M. Wahlgren, T. Arnebrant. Trends in Biotechnol., 9(1), 201 (1991). https://doi.org/10.1016/0167-7799(91)90064-O. DOI: https://doi.org/10.1016/0167-7799(91)90064-O

M. Penna, M. Mijajlovic, M. J. Biggs, J. Am. Chem. Soc., 136, 5323 (2014). https://doi.org/10.1021/ja411796e. PMid: 24506166. DOI: https://doi.org/10.1021/ja411796e

K. Klier, J. H. Shen, S. Zettlemoyer. J. Phys. Chem., 77, 1458 (1973). https://doi.org/10.1021/j100630a026. DOI: https://doi.org/10.1021/j100630a026

K. Ley, A. Christifferson, M. Penna, D. Winkler, S. Maclauglin, I. Yarovsky. Front. Mol. Biosci., 2 (2015). https:// doi.org/10.3389/fmolb.2015.00064. PMid: 26636091, PMCid: PMC4644811. DOI: https://doi.org/10.3389/fmolb.2015.00064

A.V. Verde, P. J. Beltramo, J. K. Maranas. Langmuir, 27, 5918 (2011). https://doi.org/10.1021/la104814z. PMid: 21488613. DOI: https://doi.org/10.1021/la104814z

B.O. Leung, Z. Yang, S. S. H. Wu, K. C. Chou. Langmuir, 28, 5724 (2012). https://doi.org/10.1021/la204805x. PMid: 22390193. DOI: https://doi.org/10.1021/la204805x

M. J. Stein, T. Weidner, K. McCrea, D. G. Castner, B. D. Ratner. J. Phys. Chem. B, 113, 11550 (2009). https:// doi.org/10.1021/jp9015867. PMid: 19639981, PMCid: PMC2845848. DOI: https://doi.org/10.1021/jp9015867

J. Zheng, L. Li, H. K. Tsao, Y. J. Sheng, S. Chen, S. Jiang. Biophys. J., 89, 158 (2005). https://doi.org/10.1529/biophysj. 105.059428. PMid: 15863485, PMCid: PMC1366514. DOI: https://doi.org/10.1529/biophysj.105.059428

R. S. Kane, P. Deschatelets, G. M. Whitesides. Lnagmuir, 19, 2388 (2003). https://doi.org/10.1021/la020737x. DOI: https://doi.org/10.1021/la020737x

D. Nagasawa, T. Azuma, H. Noguchi, K. Vosaki, M. Takai. J. Phys. Chem. C, 119, 17193 (2015). https://doi.org/10.1021/ acs.jpcc.5b04186. DOI: https://doi.org/10.1021/acs.jpcc.5b04186

C. M. Agarwal, R. B. Ray, J. Biomed. Mater. Res., 55, 141 (2001). https://doi.org/10.1002/1097- 4636(200105)55:2<141::AID-JBM1000>3.0.CO;2-J. DOI: https://doi.org/10.1002/1097-4636(200105)55:2<141::AID-JBM1000>3.0.CO;2-J

B. Geiger, T. Volk, T. Volberg, R. Bendori. J. Cell Sci. (suppl I). 8, 251 (1987). https://doi.org/10.1242/jcs.1987. Supplement_8.14. PMid: 3141431. DOI: https://doi.org/10.1242/jcs.1987.Supplement_8.14

J. D. Humphries, J. A. Askari, X. P. Zhang, Y. Takada, M. J. Humphries, A. P. Mould. J. Biol. Chem., 275, 20337 (2000). https://doi.org/10.1074/jbc.M000568200. PMid: 10764747. DOI: https://doi.org/10.1074/jbc.M000568200

L. C. Xu. Biomaterials, 28, 3273 (2007). https://doi. org/10.1016/j.biomaterials.2007.03.032. PMid: 17466368, PMCid: PMC3671914. DOI: https://doi.org/10.1016/j.biomaterials.2007.03.032

E. A. Vogler, J. Biomaterial Sci. Polym. Edition, 10, 1015 (1999). https://doi.org/10.1163/156856299X00667. PMid: 10591130. DOI: https://doi.org/10.1163/156856299X00667

M. Khorasani, H. Mirzadeh, S. Irani. Radiation Phys. Chem., 77, 280 (2008). https://doi.org/10.1016/j.radphyschem. 2007.05.013. DOI: https://doi.org/10.1016/j.radphyschem.2007.05.013

Y. Tamada, Q. Ikada. J. Colloid. Interface Sci. 155, 334 (1993). https://doi.org/10.1006/jcis.1993.1044. DOI: https://doi.org/10.1006/jcis.1993.1044

H. Noh, E. A. Vogler. Biomaterials, 27, 5801 (2006). https://doi.org/10.1016/j.biomaterials.2006.08.005. PMid: 16928398. DOI: https://doi.org/10.1016/j.biomaterials.2006.08.005

L. T. Allen, M. Toseho, I. S. Miller, D. P. O'Connor, S. C. Penney, I. Lynch. Biomaterials, 27, 3096 (2006). https://doi. org/10.1016/j.biomaterials.2006.01.019. PMid: 16460797. DOI: https://doi.org/10.1016/j.biomaterials.2006.01.019

B.K. Mann, J. L. West. J. Biomed. Mater. Res., 60, 86 (2002). https://doi.org/10.1002/jbm.10042. PMid: 11835163. DOI: https://doi.org/10.1002/jbm.10042

J. Ishikawa, H. Tsuji, H. Sato, Y. Gotoh. Surf. Coatings Technol., 201, 8083 (2007). https://doi.org/10.1016/j.surfcoat. 2006.01.073. DOI: https://doi.org/10.1016/j.surfcoat.2006.01.073

B.G. Keselowsky, D. M. Collard, A. J. Garcia. J. Biomed. Mater. Res. A, 66, 247 (2003). https://doi.org/10.1002/ jbm.a.10537. PMid: 12888994. DOI: https://doi.org/10.1002/jbm.a.10537

B.G. Keselowsky, D. M. Collard, A. J. Garcia. Proc. Natl. Acad. (USA), 102, 5953 (2005). https://doi.org/10.1073/ pnas.0407356102. PMid: 15827122, PMCid: PMC1087905. DOI: https://doi.org/10.1073/pnas.0407356102

K. Hatano, H. Inoue, T. Kojo, T. Tsujisawa, C. Uchiyama, Y. Uchida. Bone., 25, 439 (1999). https://doi.org/10.1016/ S8756-3282(99)00192-1. DOI: https://doi.org/10.1016/S8756-3282(99)00192-1

L. D. Bartolo, M. Rende, S. Morellis, S. A. P. Salerno, A Gordono. J. Membrane Sci., 325, 139 (2008). https://doi. org/10.1016/j.memsci.2008.07.022. DOI: https://doi.org/10.1016/j.memsci.2008.07.022

M. J. Dalby. Medical Engg. Physics, 27, 730 (2005). https://doi.org/10.1016/j.medengphy.2005.04.005. PMid: 15921949. DOI: https://doi.org/10.1016/j.medengphy.2005.04.005

A. Utarata-Wesolek. POLIMERY, 58(9), (2013). https://doi. org/10.14314/polimery.2013.685. DOI: https://doi.org/10.14314/polimery.2013.685

D.F. William. On the mechanisms of biocompatibility. Biomaterials, 29, 2941 (2008). https://doi.org/10.1016/j. biomaterials.2008.04.023. PMid: 18440630. DOI: https://doi.org/10.1016/j.biomaterials.2008.04.023

J. Anderson. Inflammation, Wound Healing and the Foreign Body Response. In: Biomaterials Science. An Introduction to Materials in Medicine, Eds. B. D. Ratner, A. S. Hoffman, F. J. Schoen, J. E. Lemon, Academic Press, Sandiego; 1996. p. 165.

Polyethylene Glycol Chemistry in Biotechnical and Biomedical Applications, Ed. J. M. Harris, Plenum Press, New York; 1992.

G. Gunkel, M. Weihart, T. Becherer, R. Haag, W. T. S. Huck. Biomacromole., 12, 4169 (2011). https://doi.org/10.1021/ bm200943m. PMid: 21932841. DOI: https://doi.org/10.1021/bm200943m

L. Li, S. Chen, J. Zheng, B. D. Ratner, S. Jiang. J. Phys. Chem B. 109, 2934 (2005). https://doi.org/10.1021/jp0473321. PMid: 16851306. DOI: https://doi.org/10.1021/jp0473321

W. Norde. Macromol. Symp., 103, 5 (1996). https://doi. org/10.1002/masy.19961030104. DOI: https://doi.org/10.1002/masy.19961030104

M. A. Daeschel, J. McGuire. Biotech genetic Engg. Rev., 15, 413 (1998). https://doi.org/10.1080/02648725.1998.106479 64. PMid: 9573612. DOI: https://doi.org/10.1080/02648725.1998.10647964

A.M. James, Charge Properties of Microbial Cell Surfaces. In: Microbial Cell Surface Analysis. Eds. N. Mozes, P. S. Handley, H. J. Busscher and P. G. Rouxhet, VCH Publisher, PG: NY; 1991. p. 221.

U. Husmark, V. Roner. J. Appl. Bacteriol., 69, 557 (1990). https://doi.org/10.1111/j.1365-2672.1990.tb01548.x. PMid: 2127266. DOI: https://doi.org/10.1111/j.1365-2672.1990.tb01548.x

M. Rosenberg, R. J. Doyle. Microbial Cell Surface Hydrophobicity: History, Measurement and Significance. In: Microbial Cell Surface Hydrophobicity, Eds. R. J. Doyle and M Rosenberg, Washington DC; Am. Soc. Microbiology, p. 1.

P. S. Meadows. Archiv. Mikrobiologia, 75, 374 (1971). https://doi.org/10.1007/BF00407699. PMid: 4927242. DOI: https://doi.org/10.1007/BF00407699

R. E. Baier. J. Biochem. Engg., 104, 257 (1982). https://doi. org/10.1115/1.3138358. PMid: 6759791. DOI: https://doi.org/10.1115/1.3138358

M. Fletcher, G. P. Loeb. Appl. Environ. Microbiol., 37, 67 (1979). https://doi.org/10.1128/AEM.37.1.67-72.1979. DOI: https://doi.org/10.1128/aem.37.1.67-72.1979

H. AL - Makhali, J. McGuire, M. A. Daeschel. Appl. Environ. Microbiol., 60, 3560 (1994). https://doi.org/10.1128/ AEM.60.10.3560-3565.1994. PMid: 7986033, PMCid: PMC201855. DOI: https://doi.org/10.1128/aem.60.10.3560-3565.1994

M. F. Maitz. Biosurf. Bio-tribiol., 1, 161 (2015). https://doi. org/10.1016/j.bsbt.2015.08.002.

T. Mitra, G. Sailakshmi, A. Ganamani, A. B. Mandal. J. Mater. Sci: Materials in Medicine, 23, 1309 (2012). https:// doi.org/10.1007/s10856-012-4586-6. PMid: 22367159. DOI: https://doi.org/10.1007/s10856-012-4586-6

K. Wang, C. Zhou, Y. Hong, X. Zhang. Interface Focus, 2, 259 (2012). https://doi.org/10.1098/rsfs.2012.0012. PMid: 23741605, PMCid: PMC3363020. DOI: https://doi.org/10.1098/rsfs.2012.0012

A. George, B. Sabsay, P. A. Simonian, A. Veis. J. Biol. Chem., 268, 12624 (1993). DOI: https://doi.org/10.1016/S0021-9258(18)31434-0

A. Marti. Injury, 3 (suppl-4), 33 (2000). https://doi. org/10.1016/S0020-1383(00)80021-2.

J. Van OSS, W. Wu, R. F. Giese, J. O. Naim. Colloid. Surf B. Biointerf., 1, 185 (1995). https://doi.org/10.1016/ 0927- 7765(94)01170-A. DOI: https://doi.org/10.1016/0927-7765(94)01170-A

M. Vallet - Reggi, J. M. Gonzalez-Calbet. Prog. Solid State Chem. 32, 1 (2004).

X. D. Zhu, H. S. Fan, Y. M. Xiao, D. X. Li, H. J. Zhang, T. Luxbacher, X. D. Zhang. Acta. Biomater, 5, 1311 (2009). https://doi.org/10.1016/j.actbio. 2008.11.024. PMid: 19121984 DOI: https://doi.org/10.1016/j.actbio.2008.11.024

S. P. Mitra, D. K. Chattoraj. Ind. J. Biochem. Biophys. 15, 147 (1978).