Scratch Resistance of High Velocity Oxy-Fuel Sprayed WC-20% Co Coatings Reinforced with Carbon Nanotubes


Affiliations

  • Vellore Institute of Technology, School of Mechanical Engineering, Vellore, Tamil Nadu, 632014, India

Abstract

Tungsten Carbide-20 weight % Cobalt (WC-20 wt% Co) coatings were extensively used material to achieve a combination of extreme hardness and excellent strength. Hence, an effort has been made to improve the toughening properties of WC-Co coatings through reinforcement of Carbon Nano-Tubes (CNTs) using High-Velocity Oxy-Fuel (HVOF) spraying process. In this work, 2 wt%, 4 wt%, and 6 wt% of CNTs were blended by the ball milling process with WC-Co powders. These composed powders were deposited by HVOF process on to the plain mild steel substrates. The scratch test analysis on as-sprayed coatings showed that due to the addition of CNTs on WC-Co coatings, the resistance to penetrate the coating surface increased. Also, by varying the percentage of CNTs in the coating system, the pores were reduced. This phenomenon is attributed to the toughening mechanism by forming a CNT bridge which avoids the formation of internal cracks.

Keywords

Carbon Nano-Tubes (CNTs), CNT Bridging, High Velocity Oxy-Fuel (HVOF) Process , Porosity Analysis, Scratch Track

Full Text:

References

Z. G. Ban, L. L. Shaw. J. Therm. Spray Technol., 12, 112 (2001). https://doi.org/10.1361/105996303770348564.

C. Bartuli, T. Valente, F. Cipri, E. Bemporad, Mario Tului. J. Therm. Spray Technol., 14, 187 (2005). https://doi. org/10.1361/10599630523746.

G. E. Kim, Carl C. Koch, Nanostructured Materials: Processing. Proper. and Applica., 91 (1999). https://doi. org/10.1016/S0165-1684(98)00219-9,

S. Das, T. K. Bandyopadhyay, S. Ghosh, A. B. Chattopadhyay, P. P. Bandyopadhyay. Metall Mater Trans A., 34, 1909 (2003). https://doi.org/10.1007/s11661-003-0156-3.

L. M. Berger. Applications of hard metals as thermal spray coatings. Int. J. Refract. Met. Hard Mater, 49, 350 (2015). https://doi.org/10.1016/j.ijrmhm.2014.09.029.

D. A. Stewart, P. H. Shipway, D. G. McCartney. Wear, 225 (1999). https://doi.org/10.1016/S0043-1648(99)00032-0.

F. Zhang, J. Shen, J. Sun. Mater. Sci. Eng. A, 381, 86 (2004). https://doi.org/10.1016/j.msea.2004.03.061.

P. H. Shipway, D.G. McCartney, T. Sudapasert. Wear, 259, 820 (2005). https://doi.org/10.1016/j.wear.2005.02.059.

R. H. Baik, J. H. Kimb, B. G. Seong. Mater. Sci. Eng. A, 449, 846 (2007). https://doi.org/10.1016/j.msea.2006.02.295.

Y. Qiao, T. E. Fischer, A. Dent. Surf. Coat. Technol. 172, 24 (2003). https://doi.org/10.1016/S0257-8972(03)00242-1.

S. Y. Park, M. C. Kim, C. G. Park. Mater. Sci. Eng. A, 449, 894 (2007). https://doi.org/10.1016/j.msea.2006.02.444.

J. He, J. M. Schoenung. Mater. Sci. Eng. A, 336, 274 (2002). https://doi.org/10.1016/S0921-5093(01)01986-4.

W. Zorawski. Surf. Coat. Technol., 220, 276 (2013). https://doi.org/10.1016/j.surfcoat.2012.11.007.

B. Liu, Z. Zeng, Y. Lin. Surf. Coat. Technol., 203, 3610 (2009). https://doi.org/10.1016/j.surfcoat.2009.05.035.

G. Subhash, A. P. Awasthi, C. Kunka, P. Jannotti, M. Devries. Scr. Mater, 123, 158 (2016). https://doi.org/10.1016/j.scriptamat. 2016.06.012.

M. A. Rodriguez, L. Gil, S. Camero, N. Frety, Y. Santana, Surf. Coat. Technol., 258, 38 (2014). https://doi.org/10.1016/j. surfcoat.2014.10.014.

J. Liao, M. J. Tan. Powder Technol. 208, 42 (2011). https:// doi.org/10.1016/j.powtec.2010.12.001.

T. Peng, I. Chang. Powder Technol, 266, 7, (2014). https:// doi.org/10.1016/j.powtec.2014.05.068.

E. Lopez, F. Beltzung, G. Zambelli. J. Mater Sci. Lett., 8, 346 (1989). https://doi.org/10.1007/BF00725519.

S. Hazra, P. Bandyopadhyay. Mater. Des., 35, 243 (2012). https://doi.org/10.1016/j.matdes.2011.09.014.

S. C. Jambagi, S. Kar, P. Brodard, P. Bandyopadhyay. Mater. Des., 112, 392 (2016). https://doi.org/10.1016/j.matdes. 2016.09.095.

S. C. Jambagi. J. Alloys Compd. 728, 126 (2017). https://doi.org/10.1016/j.jallcom.2017.08.262.

D. B. Fowler, R. Russ. Advan. Mater Proc. 11, 41 (1990).

A. Guzanova, J. Brezinova, D. Dragonovska, P. O. Maruschak. Vyzkumne Clanky, 63(2), 86 (2019). https://doi.org/10.2478/kom-2019-0011.

R. Goyal, V. Chawla, B. S. Sidhu. Asian Rev. of Mechan. Engg., 3, (2014).

P. K. Aw, A. L. K. Tan, T. P. Tan, J. Qiu. Thin Solid Films, 516, 5710 (2008). https://doi.org/10.1016/j.tsf.2007.07.065.

M. Shanmuga, J. Priyan. Mater. Sci. and Sur. Engg., 5(1), 509 (2017).

Y. Chen, K. Balani, A. Agarwal. Appl. Phys. Lett., 92, 011916 (2008). https://doi.org/10.1063/1.2821108.

S. C. Jambagi, S. Kar, P. Brodard, P. P. Bandyopadhyay. Mater. Des., 112, 392 (2016). https://doi.org/10.1016/j.matdes. 2016.09.095.

D. Mohanty, S. Kar, S. Paul, P. P. Bandyopadhyay. Mater. Des., 156, 340 (2018). https://doi.org/10.1016/j.matdes. 2018.06.054.

L. Xu, J. Song, X. Zhang, C. Deng, M. Liu, K. Zhou. Coatings, 8, 393 (2018). https://doi.org/10.3390/coatings8110393

S. C. Jambagi, N. Sarkar, P. P. Bandyopadhyay. J. Eur. Ceramic Soc., 35, 989 (2015). https://doi.org/10.1016/j.jeurceramsoc. 2014.10.017.

S. C. Jambagi. J. Alloy Compo., 728, 126 (2017). https://doi. org/10.1016/j.jallcom.2017.08.262.

S. Priyadershini, O. S. A. Rahman, K. K. Pandey, A. K. Keshri. J. Ceram. Inter., (2018). https://doi.org/10.1016/j. ceramint.2018.12.043,

T. Bai, T. Xie. Mater. Chem. Phys., 201, 113 (2017). https:// doi.org/10.1016/j.matchemphys.2017.08.018.

Y. Y. Ozbek, N. Canikoglu, M. Ipek. Acta Phys. Pol. A., 129, 600 (2016). https://doi.org/10.12693/APhysPolA.129.600.


Refbacks

  • There are currently no refbacks.